from sympy import symbols, sqrt, fibonacci, prime, prod, Rational, simplify, Function
# Define symbolic variables
n = symbols('n', integer=True, positive=True)
phi = Rational(1, 2) * (1 + sqrt(5))
Omega = symbols('Omega', positive=True, real=True)
# Define symbolic Fibonacci and prime functions
F = Function('F')(n) # Fibonacci number F(n)
P = prod([prime(k) for k in range(1, n+1)]) # Product of first n primes
# Closed-form symbolic expression for r_n
r_n = sqrt(phi * Omega * fibonacci(n) * 2**n * P)
# Define recursive form
F_n = fibonacci(n)
F_prev = fibonacci(n - 1)
p_n = prime(n)
r_prev = symbols('r_prev')
r_recursive = r_prev * sqrt(2 * p_n * (F_n / F_prev))
# Output symbolic forms
simplified_closed_form = simplify(r_n)
simplified_recursive = simplify(r_recursive)
simplified_closed_form, simplified_recursive
from sympy import symbols, sqrt, fibonacci, prime, Product
# Define symbolic variables
n, k = symbols('n k', integer=True, positive=True)
phi = (1 + sqrt(5)) / 2
Omega = symbols('Omega', positive=True)
# Define Fibonacci and prime functions
F_n = fibonacci(n)
F_prev = fibonacci(n - 1)
p_n = prime(n)
# Define symbolic product of primes up to n
P_n = Product(prime(k), (k, 1, n))
# --- Closed-form Identity ---
r_n = sqrt(phi * Omega * F_n * 2**n * P_n)
# --- Recursive Identity ---
r_prev = symbols('r_prev')
r_recursive = r_prev * sqrt(2 * p_n * F_n / F_prev)
# Output both forms
print("Closed-form: r_n =", r_n)
print("Recursive: r_n =", r_recursive)
from sympy import symbols, sqrt, fibonacci, prime, Rational, simplify, Function, IndexedBase
# Define symbolic components
n = symbols('n', integer=True, positive=True)
phi = Rational(1, 2) * (1 + sqrt(5))
Omega = symbols('Omega', positive=True, real=True)
F = Function('F') # Fibonacci sequence function
P = Function('P') # Prime product function
# Define symbolic Fibonacci and Prime functions
F_n = fibonacci(n)
F_n1 = fibonacci(n - 1)
p_n = prime(n)
# Define recursive form
r = IndexedBase('r')
r_n_recursive = simplify(r[n - 1] * sqrt(2 * p_n * F_n / F_n1))
# Define closed form: r_n = sqrt(phi * Omega * F_n * 2^n * product_{k=1}^n p_k)
# Symbolic product of primes up to n (we define as a function P(n))
P_n = symbols('P_n', positive=True) # placeholder for ∏_{k=1}^n p_k
r_n_closed = simplify(sqrt(phi * Omega * F_n * (2 ** n) * P_n))
r_n_recursive, r_n_closed
from sympy import symbols, sqrt, fibonacci, prime, Rational, simplify, Function, IndexedBase
# Declare symbolic variable n
n = symbols('n', integer=True, positive=True)
# Constants
phi = Rational(1, 2) * (1 + sqrt(5))
Omega = symbols('Omega', positive=True)
# Functions
F = Function('F') # Fibonacci function
P = Function('P') # Prime product function
# Fibonacci at n and n-1
F_n = fibonacci(n)
F_n1 = fibonacci(n - 1)
# nth prime
p_n = prime(n)
# Recursive definition
r = IndexedBase('r')
r_n_recursive = simplify(r[n - 1] * sqrt(2 * p_n * F_n / F_n1))
# Closed-form definition
P_n = symbols('P_n') # Abstract symbol for ∏_{k=1}^n p_k
r_n_closed = simplify(sqrt(phi * Omega * F_n * (2 ** n) * P_n))
print("Recursive form:\n", r_n_recursive)
print("Closed-form:\n", r_n_closed)
from sympy import symbols, Function, sqrt, fibonacci, primerange, simplify, Rational, Eq, IndexedBase, Product, Indexed
# Symbolic Definitions
n = symbols('n', integer=True, positive=True)
phi = Rational(1, 2) * (1 + sqrt(5)) # Golden ratio
Omega = symbols('Omega', positive=True, real=True)
# Define Fibonacci and prime sequence symbols
F = Function('F') # Fibonacci function
p = IndexedBase('p') # prime sequence
P = Function('P') # prime product function
# Explicit expression for Fibonacci in terms of n
F_n = fibonacci(n)
two_pow_n = 2**n
# Prime product up to n (symbolically)
k = symbols('k', integer=True)
P_n = Product(p[k], (k, 1, n)).doit()
# Radius definition
r_n = sqrt(phi * Omega * F_n * two_pow_n * P_n)
# Recursive form (needs F_n / F_{n-1} and p_n)
F_prev = fibonacci(n - 1)
p_n = p[n]
r_prev = symbols('r_prev', positive=True)
# Recursive form expression
recursive_expr = r_prev * sqrt(2 * p_n * F_n / F_prev)
r_n, recursive_expr.simplify()
# Re-import necessary modules after code execution state reset
from sympy import symbols, Function, sqrt, fibonacci, primerange, Rational, Eq, IndexedBase, Product
# Symbolic Definitions
n = symbols('n', integer=True, positive=True)
phi = Rational(1, 2) * (1 + sqrt(5)) # Golden ratio
Omega = symbols('Omega', positive=True, real=True)
# Define Fibonacci and prime sequence symbols
F = Function('F') # Fibonacci function
p = IndexedBase('p') # prime sequence
P = Function('P') # prime product function
# Fibonacci term
F_n = fibonacci(n)
F_prev = fibonacci(n - 1)
# Prime product up to n (symbolically)
k = symbols('k', integer=True)
P_n = Product(p[k], (k, 1, n)).doit()
# Radius definition (closed form)
r_n = sqrt(phi * Omega * F_n * 2**n * P_n)
# Recursive form
r_prev = symbols('r_prev', positive=True)
p_n = p[n]
r_recursive = r_prev * sqrt(2 * p_n * F_n / F_prev)
r_n, r_recursive.simplify()