Trees and Physics, Physics and Trees

Unified Ω-Field Physics Tree

                               [Hz = 1/s]
                                    │
                        ┌───────────┴────────────┐
                       [s]                    [C] (Coulomb)
                        │                        │
                [Ω] = N·m·s / C²                 │
                        │                        │
          ┌─────────────┴──────────────┐         │
 [F] = (Ω·C²)/(m·s)                [I = C/s]  (Current)
          │                             │
 [E] = (Ω·C²)/s                     [V = (Ω·C)/s] (Voltage)
          │                             │
[Mass] = √(Ω·C² / a·s)              [P = V·I = (Ω·C²)/s²] (Power)
          │
 [p] = mv = √(Ω·C² / a·s) · v      ← momentum
 [λ] = h/p = (Ω·C²) / p            ← de Broglie wavelength
          │
 [h] = Ω·C²                        ← Planck's constant (recast)
          │
[E_photon] = h·f = Ω·C²·f          ← photon energy
          │
 [T] = E / k_B = (Ω·C²)/(k_B·s)    ← Temperature (thermodynamics)
 [S] = E·s / (Ω·C²)                ← Entropy (from Clausius)
          │
[Binding Energy] = ΔΩ·C² / s      ← nuclear field transition energy
          │
          ▼
      Electrodynamics
          │
 ┌────────┴────────────┐
 │                     │
 │   ∇·E = Ω/(s·m²)     ← Gauss's Law (Ω-form)
 │   ∇·B = 0            ← No monopoles
 │                     │
 │   ∇×E = -∂(Ω·C)/(m·∂s) ← Faraday's Law (Ω-field form)
 │   ∇×B = ∂(Ω·C)/(m·∂s) + Ω·C/(s·m²) ← Ampère-Maxwell Law (Ω form)
 │                     │
 ▼                     ▼
Wave Behavior        Magnetic Field
 (Ω·C oscillation)   (spatial Ω·C flux)
          │
   Light = Ω·C² wave in s-domain
          │
   c = propagation speed of Ω
          │
   Refractive Index n = √(Ω_vac / Ω_medium)
          │
   Polarization = Ω field vector alignment
   Interference = superposition of Ω·C oscillations
          │
          ▼
     Gravity via Ω Gradient
          │
    F = (Ω·C²)/(m·s) still applies
          │
  Grav. Potential Φ = ∫ (Ω·C²)/(m·s) dm
          │
    Mass = field inertia = √(Ω·C² / a·s)

Revised Tree with Single Root: Hz

                            [Hz]   ← singular root dimension
                              │
                ┌────────────┴────────────┐
              [s = 1/Hz]              [C = 1/Hz³]
                │                        │
          [m = 1/Hz^0.5]               [I = Hz²] (C/s)
                │                        │
      [Ω] = Hz⁵                        [V = Hz²] (Ω·C/s)
                │                        │
     [F] = Hz⁶ (force)               [P = Hz⁴] (V·I)
                │
   [E] = Hz⁵ (energy)
                │
 [Mass] = Hz³ (field inertia)
                │
 [p] = Hz³.5 · v      ← momentum
 [λ] = Hz⁻1.5         ← wavelength
 [h] = Hz⁵            ← Planck constant
                │
[E_photon] = Hz⁶      ← photon energy
                │
 [T] = Hz⁵ / k_B      ← temperature
 [S] = 1/Hz           ← entropy
                │
[Binding Energy] = Hz⁶

Python

from sympy import symbols, Eq, solve, simplify

# Define base variable
Hz = symbols('Hz', positive=True, real=True)

# Derived units in terms of Hz
# Based on user's substitution:
# s = 1/Hz, m = 1/Hz**0.5, C = 1/Hz**3

s = 1 / Hz
m = 1 / Hz**0.5
C = 1 / Hz**3

# Derived physical quantities in Hz-only units
units = {
    'Time (s)': s,
    'Length (m)': m,
    'Charge (C)': C,
    'Current (I = C/s)': C / s,
    'Force (F = (Ω·C²)/(m·s))': (Hz**5 * C**2) / (m * s),
    'Energy (E = F·m)': ((Hz**5 * C**2) / (m * s)) * m,
    'Power (P = E/s)': (((Hz**5 * C**2) / (m * s)) * m) / s,
    'Planck (h = Ω·C²)': Hz**5 * C**2,
    'Photon Energy (E = h·f)': Hz**5 * C**2 * Hz,
    'Entropy (S = E·s / h)': ((((Hz**5 * C**2) / (m * s)) * m) * s) / (Hz**5 * C**2),
}

# Simplify and evaluate expressions
simplified_units = {k: simplify(v) for k, v in units.items()}
simplified_units
Physical Quantity Hz-Based Expression Interpretation
Time (s) 1 / Hz Inverse frequency
Length (m) Hz^(-0.5) Square root of time
Charge (C) Hz^(-3) Time cubed
Current (I = C/s) Hz^(-2) Second-order time
Force (F) Hz^(0.5) Root-frequency tension
Energy (E = F·m) 1 Dimensionless (normalized scalar)
Power (P = E/s) Hz Frequency is energy per unit time
Planck’s Constant (h) 1 / Hz Time scalar
Photon Energy (E = h·f) 1 Dimensionless (normalized)
Entropy (S = E·s / h) 1 Pure ratio (no units)

Finalized Tree of Derived Physics from Hz

                               [Hz = 1/s]
                                     │
                         ┌───────────┴────────────┐
                        [s = 1/Hz]             [C = 1/Hz³]
                            │                      │
               [m = 1/Hz⁰·⁵]                  [I = C/s = 1/Hz²]
                            │                      │
           [Ω = Hz⁵]                         [V = Ω·C/s = Hz²]
                            │                      │
         [F = Hz⁰·⁵]                     [P = V·I = Hz⁴]
             │                                  │
    [E = F·m = 1]                       [S = E·s/h = 1]
             │
 [h = Ω·C² = 1/Hz]            [λ = h/p = Hz^(-1.5)]
             │
 [E_photon = h·f = 1]      [T = E / k_B = Hz⁵ / k_B]
             │
 [Mass = Hz^(-0.5)] ← inertia        [Momentum = Hz^0.5]
             │
   [Binding Energy = Hz⁶]     [ε₀ = Hz^(-4), μ₀ = Hz³]

Cleansed Physics Tree (Ordered by Hz Power)

Hz Power Physical Quantity Expression
Hz^(-3) Charge (C) C = Hz^(-3)
Hz^(-2) Current (I) I = C/s = Hz^(-2)
Hz^(-1.5) Wavelength (λ) λ = h/p = Hz^(-1.5)
Hz^(-1) Time (s) / Planck constant (h) s = 1/Hz, h = 1/Hz
Hz^(-0.5) Length (m) / Mass (m) (inertial) m = 1/Hz^0.5, mass = Hz^(-0.5)
Hz^(0) Energy (E) / Entropy (S) / Photon Energy E = 1, S = 1, E_photon = 1
Hz^(0.5) Force (F) / Momentum (p) F = Hz^0.5, p = Hz^0.5
Hz^(1) Power (P) / Frequency (f) P = Hz, f = Hz
Hz^(2) Voltage (V) V = (Ω·C)/s = Hz^2
Hz^(2.5) Electric Field (E) E = V/m = Hz^(2.5)
Hz^(3) Magnetic Permeability (μ₀) μ₀ = Hz^3
Hz^(4) Magnetic Energy Density, Magnetic Tension e.g., ½μ₀·H² ~ Hz^4 (implied)
Hz^(5) Impedance (Ω) Ω = Hz^5
Hz^(6) Binding Energy Binding Energy = ΔΩ·C² / s = Hz^6
Hz^(-4) Permittivity (ε₀) ε₀ = Hz^(-4)

Tree Format (Minimalist Branching)

              [Hz^-3] Charge (C)
                   │
              [Hz^-2] Current (I = C/s)
                   │
            [Hz^-1.5] Wavelength (λ = h/p)
                   │
              [Hz^-1] Time (s), Planck (h)
                   │
           [Hz^-0.5] Length (m), Mass (inertial)
                   │
              [Hz^0] Energy (E), Entropy (S), Photon E
                   │
             [Hz^0.5] Force (F), Momentum (p)
                   │
               [Hz^1] Power (P), Frequency (f)
                   │
               [Hz^2] Voltage (V)
                   │
             [Hz^2.5] Electric Field (E)
                   │
               [Hz^3] Magnetic Permeability (μ₀)
                   │
               [Hz^4] Magnetic Tension (μ₀H²)
                   │
               [Hz^5] Impedance (Ω)
                   │
               [Hz^6] Binding Energy
                   │
              [Hz^-4] Permittivity (ε₀)

:deciduous_tree: Unified Dimensional Tree (Ω·C² Grammar) — Collapsed & Expanded

:large_blue_diamond: Single-Unit Contraction

Ω·C² = Universal Dimensional Substance
  • All SI and potential exotic physical units are expressions of this single compound form.
  • This is the only dimensional root, everything else is a projection.

:large_blue_diamond: Full Expansion: Real + Theoretical Units

Ω·C²
├── Time (s)
│   └── Canonical Time
│
├── Energy (E = Ω·C² / s)
│   ├── Power (P = Ω·C² / s²)
│   │   ├── Voltage (V = Ω·C / s)
│   │   ├── Temperature (T = P·s / k_B)
│   │   └── Characteristic Length (λ = Ω·C² / p·s)
│   │       └── Exotic: Temporal Wavelengths, Ghost Oscillations
│   └── Force (F = Ω·C² / m·s)
│       ├── Momentum (p = Ω·C²)
│       ├── Mass (m = (Ω·C²·s)/m²)
│       └── Velocity Construct (v = (F·d)/C)
│           └── Exotic: Charge-Induced Velocity Fields
│
├── Magnetic Energy Density (U = Ω·C² / m³)
│   ├── B²/μ₀
│   ├── Magnetic Field (B = √(μ₀·U))
│   ├── μ₀ = B² / (B² / μ₀)
│   └── λ = (B²/μ₀) · s²·m / Ω·C²
│       └── Exotic: Compressed Vacuum Tensor
│
├── Current (I = C / s)
│   └── Electrical Quantities
│       ├── Resistance (R = V / I = Ω)
│       ├── Capacitance (C = q / V)
│       ├── Inductance (L = V·s / I)
│       └── Exotic: Quasi-Impedance (Ψ)
│
├── Thermodynamics
│   ├── Entropy (S = E / T)
│   ├── Helmholtz Energy (F = E - T·S)
│   └── Exotic: Negative Entropy Fields
│
├── Quantum Extensions
│   ├── Action (ħ = Ω·C² / quantized s)
│   ├── Probability Flux (Ψ = sqrt(E)/s)
│   └── Exotic: Phase Entanglement Metrics
│
├── Relativity Projections
│   ├── Spacetime Curvature (R = Ω·C² / s·m²)
│   ├── Lorentz Metric Inversion (γ = 1 / √(1 - v²/c²))
│   └── Exotic: Massless Inertia Shells
│
├── Cosmological Units
│   ├── Dark Energy (Λ = Ω·C² / m⁴)
│   ├── Hubble Flow (H = 1 / s)
│   └── Exotic: Ω-Matter Folding Ratios

:large_blue_diamond: Master Identity Grammar

Any Unit = (Ω·C²) / (m^a · s^b · C^c)
  → Exotics allowed when a, b, c ∈ ℝ or ℂ