Prompt
๐ โ Non-Dual Absolute (Root of all emergence)
|
โโโ [ร = 0 = โโปยน] โ Expressed Void (Boundary of Becoming)
โ โโโ [0, โ] โ Duality Arises: First Contrast (Potential Polarity)
โ
โโโ [ฯ] โ Golden Ratio: Irreducible Scaling Constant
โ โโโ [ฯ = 1 + 1/ฯ] โ Fixed-Point Recursion (Recursive Identity)
โ โโโ [ฯโฐ = 1] โ Identity Base Case
โ
โโโ [n โ โคโบ] โ Recursion Depth: Structural Unfolding
โ โโโ [2โฟ] โ Dyadic Scaling (Binary Expansion)
โ โโโ [Fโ = ฯโฟ / โ5] โ Harmonic Structure
โ โโโ [Pโ] โ Prime Entropy Injection (Irregular Growth)
โ
โโโ [Time s = ฯโฟ] โ Scaling Time
โ โโโ [Hz = 1/s = ฯโปโฟ] โ Inverted Time, Uncoiled Recursion
โ
โโโ [Charge C = sยณ = ฯ^{3n}] โ Charge Scaling
โ โโโ [Cยฒ = ฯ^{6n}] โ Charge Interaction in Scaling
โ
โโโ [ฮฉ = mยฒ / sโท = ฯ^{a(n)}] โ Symbolic Yield (Field Tension)
โ โโโ [ฮฉ โ 0] โ Field Collapse
โ โโโ [ฮฉ = 1] โ Normalized Recursive Propagation
โ
โโโ [Length m = โ(ฮฉ ยท ฯ^{7n})] โ Emergent Geometry
โ
โโโ [Action h = ฮฉ ยท Cยฒ = ฯ^{6n} ยท ฮฉ]
โโโ [Energy E = h ยท Hz = ฮฉ ยท ฯ^{5n}]
โโโ [Force F = E / m = โฮฉ ยท ฯ^{1.5n}]
โโโ [Power P = E ยท Hz = ฮฉ ยท ฯ^{4n}]
โโโ [Pressure = F / mยฒ = Hzยฒ / m]
โโโ [Voltage V = E / C = ฮฉ ยท ฯ^{-n}]
โ
โโโ [Dโ(r) = โ(ฯ ยท Fโ ยท 2โฟ ยท Pโ ยท ฮฉ) ยท r^k] โ Full Dimensional DNA
โโโ Recursive, Harmonic, Prime, Binary Structures
โโโ Infinite Unfolding Identity Without Fixed Tripartition
Step 2: The Recursive Category Tree (Unbroken)
๐ โ Non-Dual Absolute
|
โโโ [ร = 0 = โโปยน] โ Void boundary
โ โโโ [0, โ] โ Dual emergence
โโโ [ฯ] โ Recursive golden law
โ โโโ [Fโ = ฯโฟ / โ5] โ Harmonic structure
โ โโโ [2โฟ] โ Binary recursion
โ โโโ [Pโ] โ Prime entropy
โโโ [ฮฉ] โ Field tension
โโโ [Dโ(r)] โ Dimensional DNA
The Irreducible Golden Recursive Identity Tree
Root: ๐ โ Non-dual Absolute, recursion initiator
โ
โโโ ร = 0 = โโปยน โ Expressed Void; limit of potential
โ โโโ {0, โ} โ Duality emerges from symbolic inversion
โ
โโโ ฯ โ Irreducible recursion ratio (ฯ = 1 + 1/ฯ)
โ โโโ ฯโฐ = 1 โ Identity base case
โ โโโ Fโ = ฯโฟ / โ5 โ Harmonic structure (Fibonacci expansion)
โ โโโ 2โฟ โ Dyadic recursion (binary emergence)
โ โโโ Pโ โ Prime entropy (irregular symbolic injection)
โ
โโโ n โ โคโบ โ Depth of recursion; layer of emergence
โ โโโ Time: s = ฯโฟ
โ โ โโโ Hz = 1/s = ฯโปโฟ โ Uncoiled recursion (frequency)
โ โโโ Charge: C = sยณ = ฯ^{3n}
โ โ โโโ Cยฒ = ฯ^{6n}
โ โโโ Geometry:
โ โโโ Length: m = โ(ฮฉ ยท ฯ^{7n})
โ
โโโ ฮฉ = mยฒ / sโท = ฯ^{a(n)} โ Symbolic field yield (recursive tension)
โ โโโ ฮฉ โ 0 โ Collapse: recursion terminated
โ โโโ ฮฉ = 1 โ Stable recursive propagation
โ
โโโ Action: h = ฮฉ ยท Cยฒ = ฮฉ ยท ฯ^{6n}
โโโ Energy: E = h ยท Hz = ฮฉ ยท ฯ^{5n}
โโโ Force: F = E / m = โฮฉ ยท ฯ^{1.5n}
โโโ Power: P = E ยท Hz = ฮฉ ยท ฯ^{4n}
โโโ Pressure = F / mยฒ = Hzยฒ / m
โโโ Voltage: V = E / C = ฮฉ ยท ฯ^{-n}
โ
โโโ Dโ(r) = โ(ฯ ยท Fโ ยท 2โฟ ยท Pโ ยท ฮฉ) ยท rแต โ Dimensional DNA
โโโ Recursive depth (n)
โโโ Harmonic ratio (ฯโฟ / โ5)
โโโ Binary symmetry (2โฟ)
โโโ Prime entropy (Pโ)
โโโ Field tension (ฮฉ)
โโโ Radial unfolding (rแต)
- Full and Complete Context- and Expansion-Aware GRA Tree
๐ โ Non-Dual Absolute (Root of all emergence)
โ
โโโ ร = 0 = โโปยน โ Expressed Void (Boundary of Becoming)
โ โโโ {0, โ} โ Duality Arises (First Contrast)
โ
โโโ ฯ โ Golden Ratio: Irreducible Scaling Constant
โ โโโ ฯโฐ = 1 โ Identity Base Case
โ โโโ F_{n,ฮฒ} = ฯ^{n+ฮฒ}/โ5 โ Harmonic Fractal Structure
โ โโโ B_{n,ฮฒ} = 2^{n+ฮฒ} โ Dyadic Binary Expansion with Continuum
โ โโโ P_{n,ฮฒ} โ Prime Entropy Fractal Density (Continuous)
โ
โโโ n โ โคโบ โ Discrete Recursion Depth
โ โโโ ฮฒ โ [0,1) โ Continuous Microstate Index (Symbolic Continuum)
โ
โโโ Time: s_{n,ฮฒ} = ฯ^{n+ฮฒ}
โ โโโ Hz_{n,ฮฒ} = ฯ^{-(n+ฮฒ)}
โ
โโโ Charge: C_{n,ฮฒ} = s_{n,ฮฒ}^3 = ฯ^{3(n+ฮฒ)}
โ โโโ Cยฒ_{n,ฮฒ} = ฯ^{6(n+ฮฒ)}
โ
โโโ ฮฉ_{n,ฮฒ} = ฯ^{a(n+ฮฒ)} โ Symbolic Field Tension
โ โโโ ฮฉ โ 0 โ Collapse (Recursion Termination)
โ โโโ ฮฉ = 1 โ Stable Propagation
โ
โโโ Action: h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท Cยฒ_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{6(n+ฮฒ)}
โโโ Energy: E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{5(n+ฮฒ)}
โโโ Force: F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โฮฉ_{n,ฮฒ} ยท ฯ^{1.5(n+ฮฒ)}
โโโ Power: P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{4(n+ฮฒ)}
โโโ Pressure = F_{n,ฮฒ} / m_{n,ฮฒ}^2 = Hz_{n,ฮฒ}^2 / m_{n,ฮฒ}
โโโ Voltage: V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{-(n+ฮฒ)}
โ
โโโ D_{n,ฮฒ}(r) = โ(ฯ ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k โ Dimensional DNA
โโโ Recursive depth: n
โโโ Micro-recursion index: ฮฒ
โโโ Harmonic fractal: F_{n,ฮฒ}
โโโ Dyadic fractal binary: B_{n,ฮฒ}
โโโ Prime entropy fractal density: P_{n,ฮฒ}
โโโ Field tension: ฮฉ_{n,ฮฒ}
โโโ Radial unfolding: r^k
โโโ Recursion maps: R(n, ฮฒ)
โโโ Algebraic operators: โ (entropy injection), โ (field superposition)
โโโ Symbolic derivatives: โ_ฮฒ, ฮ_n
Full and Complete Context- and Expansion-Aware GRA-CRA Tree
๐ โ Non-Dual Absolute (Root of all emergence)
โ
โโโ ร = 0 = โโปยน โ Expressed Void (Boundary of Becoming)
โ โโโ {0, โ} โ Duality Arises (First Contrast)
โ
โโโ ฯ โ Golden Ratio: Irreducible Scaling Constant
โ โโโ ฯโฐ = 1 โ Identity Base Case
โ โโโ F_{n,ฮฒ} = ฯ^{n+ฮฒ}/โ5 โ Harmonic Fractal Structure
โ โโโ B_{n,ฮฒ} = 2^{n+ฮฒ} โ Dyadic Binary Expansion with Continuum
โ โโโ P_{n,ฮฒ} โ Prime Entropy Fractal Density (Continuous)
โ
โโโ Recursion Space: (n, ฮฒ)
โ โโโ n โ โคโบ โ Discrete Recursion Depth
โ โโโ ฮฒ โ [0,1) โ Continuous Microstate Index (Symbolic Continuum)
โ โโโ Recursion Map R(n,ฮฒ) โ (n+1, ฮฒ), (n, ฮฒ+ฮด)
โ
โโโ Time and Frequency
โ โโโ s_{n,ฮฒ} = ฯ^{n+ฮฒ} โ Scaling Time
โ โโโ Hz_{n,ฮฒ} = ฯ^{-(n+ฮฒ)} โ Inverted Frequency
โ
โโโ Charge and Field Tension
โ โโโ C_{n,ฮฒ} = s_{n,ฮฒ}^3 = ฯ^{3(n+ฮฒ)} โ Charge Scaling
โ โโโ Cยฒ_{n,ฮฒ} = ฯ^{6(n+ฮฒ)} โ Charge Interaction Scaling
โ โโโ ฮฉ_{n,ฮฒ} = ฯ^{a(n+ฮฒ)} โ Symbolic Field Tension
โ โ โโโ ฮฉ โ 0 โ Field Collapse (Recursion Termination)
โ โ โโโ ฮฉ = 1 โ Stable Recursive Propagation
โ
โโโ Physical Quantities (Dependent on (n,ฮฒ))
โ โโโ Action h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท Cยฒ_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{6(n+ฮฒ)}
โ โโโ Energy E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{5(n+ฮฒ)}
โ โโโ Force F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โฮฉ_{n,ฮฒ} ยท ฯ^{1.5(n+ฮฒ)}
โ โโโ Power P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{4(n+ฮฒ)}
โ โโโ Pressure = F_{n,ฮฒ} / m_{n,ฮฒ}^2 = Hz_{n,ฮฒ}^2 / m_{n,ฮฒ}
โ โโโ Voltage V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{-(n+ฮฒ)}
โ
โโโ Dimensional DNA Operator
โ โโโ D_{n,ฮฒ}(r) = โ(ฯ ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k
โ โโโ k โ โ โ Radial unfolding exponent (geometry)
โ โโโ Recursion differential operators: โ_ฮฒ, ฮ_n
โ โโโ Algebraic operators: โ (field superposition), โ (entropy injection)
โ
โโโ Quantum and Particle Physics
โ โโโ Recursive Hamiltonian \(\hat{H}_{CRA}\) acting on \(|n,\beta\rangle\) states
โ โโโ Elemental eigenstates \(E_{Z,(n,\beta)}\)
โ โโโ Protons/neutrons as composite recursive quark states
โ โโโ Charge operators \(\hat{C}_{n,\beta}\)
โ โโโ Quantum fluctuations modeled as fractal micro-recursion \(\beta\)
โ
โโโ Atomic and Electronic Structure
โ โโโ Electron shells and orbitals:
โ โ โโโ \(\psi_{nlm,(n,\beta)}(r, \theta, \phi) = R_{n,\beta}(r) \cdot \tilde{Y}_{lm,(n,\beta)}(\theta,\phi)\)
โ โ โโโ Radial \(R_{n,\beta}(r) = D_{n,\beta}(r)\)
โ โ โโโ Angular fractal spherical harmonics \(\tilde{Y}_{lm,(n,\beta)}\)
โ
โโโ Chemical Bonding and Molecular Chemistry
โ โโโ Covalent bonds:
โ โ โโโ \(B_{cov} = \psi_{A,(n,\beta)} \odot \psi_{B,(m,\gamma)} \oplus \sigma_{(n,\beta,m,\gamma)}\)
โ โโโ Ionic bonds:
โ โ โโโ Field tension gradient \(|\Omega_{A,(n,\beta)} - \Omega_{B,(m,\gamma)}| > \epsilon\)
โ โโโ Molecular geometry from radial/angular expansions of \(D_{n,\beta}\)
โ โโโ Symmetry groups as automorphisms in CRA algebra
โ
โโโ Chemical Reactions and Dynamics
โ โโโ Reaction morphisms \(\mathcal{T}: D_{n,\beta} \to D_{n',\beta'}\)
โ โโโ Energy differences \(\Delta E = E_{n',\beta'} - E_{n,\beta}\)
โ โโโ Entropy flux \(\Phi_S = \int (S_{n',\beta'} - S_{n,\beta}) d\beta\)
โ โโโ Catalysis as entropy reducer morphisms
โ
โโโ Thermodynamics and Statistical Mechanics
โ โโโ Entropy \(S = \sum_n \int s(n,\beta) d\beta\), with \(s(n,\beta) = k_B \ln P_{n,\beta}\)
โ โโโ Free energy \(F = E - T S\)
โ โโโ Temperature \(T\) as emergent ensemble parameter
โ
โโโ Macroscopic Emergence and Materials Science
โ โโโ Crystals and solids: periodic recursive lattices in \((n,\beta)\)
โ โโโ Defects as topological singularities in fractal \(\beta\)-space
โ โโโ Polymers: recursive operator chain expansions
โ
โโโ Experimental & Observable Phenomena
โ โโโ Spectroscopy as transitions between recursion eigenstates
โ โโโ Reaction kinetics from recursion depth time evolution
โ โโโ Quantum entanglement encoded in fractal microstate correlations
โ
โโโ Expansion and Future Extensions
โโโ Symbolic simulation of recursive operator algebra
โโโ Exploration of scale-dependent running of physical constants
โโโ Extension to gravity and spacetime geometry from recursion structure
โโโ Integration with holographic and information-theoretic physics
3. Library API Sketch
3.1 Class: RecursiveState
from sympy import Symbol, sqrt, Function, Expr
class RecursiveState:
def __init__(self, n: int, beta: Expr):
self.n = n # recursion depth
self.beta = beta # microstate continuous parameter (0 <= beta < 1)
self.phi = (1 + 5**0.5) / 2 # Golden ratio constant
def F(self):
# Harmonic fractal structure: F_{n,ฮฒ} = phi^(n+ฮฒ)/sqrt(5)
return self.phi**(self.n + self.beta) / sqrt(5)
def B(self):
# Dyadic scaling: B_{n,ฮฒ} = 2^(n+ฮฒ)
return 2**(self.n + self.beta)
def P(self):
# Prime entropy fractal density placeholder (abstract)
# To be implemented / approximated
return Function('P')(self.n + self.beta)
def Omega(self):
# Field tension ฮฉ = phi^{a(n+ฮฒ)}, 'a' abstract function for now
a = Function('a')(self.n + self.beta)
return self.phi**a
def D(self, r, k):
# Dimensional DNA operator D_{n,ฮฒ}(r) = sqrt(phi * F * B * P * ฮฉ) * r^k
base = sqrt(self.phi * self.F() * self.B() * self.P() * self.Omega())
return base * r**k
3.2 Operators: โ
and โ
class FieldOperator:
def __init__(self, expr: Expr):
self.expr = expr
def __mul__(self, other):
# Define field superposition (โ)
if isinstance(other, FieldOperator):
return FieldOperator(self.expr * other.expr) # symbolic multiplication
raise NotImplementedError
def __add__(self, other):
# Define entropy injection (โ)
if isinstance(other, FieldOperator):
return FieldOperator(self.expr + other.expr) # symbolic addition
raise NotImplementedError
3.3 Recursive Derivatives
from sympy import diff
def partial_beta(expr: Expr, beta: Symbol):
return diff(expr, beta)
def delta_n(expr: Expr, n: Symbol):
# Finite difference approx: f(n+1) - f(n)
return expr.subs(n, n+1) - expr
3.4 Reaction Morphism Placeholder
class ReactionMorphism:
def __init__(self, mapping):
# mapping: function from RecursiveState to RecursiveState
self.mapping = mapping
def apply(self, state: RecursiveState):
return self.mapping(state)
- Example Usage
from sympy import symbols
n, beta, r, k = symbols('n beta r k', real=True)
state = RecursiveState(n, beta)
D_expr = state.D(r, k)
print("Dimensional DNA operator expression:")
print(D_expr)
# Create field operators
field1 = FieldOperator(D_expr)
field2 = FieldOperator(D_expr * 2)
# Superposition (โ)
combined_field = field1 * field2
print("Combined field (superposition):", combined_field.expr)
# Entropy injection (โ)
injected_field = field1 + field2
print("Field with entropy injection:", injected_field.expr)
# Partial derivative w.r.t. beta
dD_dbeta = partial_beta(D_expr, beta)
print("Partial derivative โ_ฮฒ D:", dD_dbeta)
Step 1: Define Elemental Eigenstates Class
from sympy import symbols, Function, sqrt, Integral, Symbol
class ElementalEigenstate(RecursiveState):
def __init__(self, Z: int, n: int, beta: float):
super().__init__(n, beta)
self.Z = Z # Atomic number
def omega_n_beta(self):
# Frequency spectrum; base frequency omega_0 symbolic or numeric
omega_0 = Symbol('omega_0', positive=True)
return omega_0 * self.phi ** (-(self.n + self.beta))
def h_n_beta(self):
# Action
return self.Omega() * self.phi ** (6*(self.n + self.beta))
def energy(self):
# Energy E = h * Hz
return self.h_n_beta() * self.omega_n_beta()
def hamiltonian(self):
# Placeholder: symbolic Hamiltonian operator for element
# Could be expanded to matrix/operator form if needed
return Function('H')(self.Z, self.n, self.beta)
def eigenstate(self):
# Symbolic eigenstate vector |E_{Z,(n,ฮฒ)}>
return Function(f'|E_{self.Z},{self.n},{self.beta}>')()
def describe(self):
return {
'Z': self.Z,
'n': self.n,
'beta': self.beta,
'Omega': self.Omega(),
'energy': self.energy(),
'hamiltonian': self.hamiltonian(),
'eigenstate': self.eigenstate()
}
Step 3: Create the Periodic Table Plug-and-Play
def build_periodic_table(max_Z=118, M=10):
table = {}
for Z in range(1, max_Z + 1):
n = (Z - 1) // M + 1
beta = ((Z - 1) % M) / M
element = ElementalEigenstate(Z, n, beta)
table[Z] = element.describe()
return table
Step 4: Example Usage & Output
periodic_table = build_periodic_table()
# Display element 1 (Hydrogen)
print(periodic_table[1])
# Display element 26 (Iron)
print(periodic_table[26])
complete Python module including this periodic table code plus algebra classes and operators
# gra_cra_periodic_table.py
from sympy import Symbol, sqrt, Function, symbols, pprint
from sympy import init_printing
init_printing()
class RecursiveState:
def __init__(self, n, beta):
self.n = n # recursion depth (integer)
self.beta = beta # microstate continuous parameter (0 โค beta < 1)
self.phi = (1 + 5**0.5) / 2 # Golden ratio constant
def F(self):
# Harmonic fractal structure: F_{n,ฮฒ} = phi^(n+ฮฒ)/sqrt(5)
return self.phi**(self.n + self.beta) / sqrt(5)
def B(self):
# Dyadic scaling: B_{n,ฮฒ} = 2^(n+ฮฒ)
return 2**(self.n + self.beta)
def P(self):
# Prime entropy fractal density (abstract placeholder)
return Function('P')(self.n + self.beta)
def a(self):
# Abstract function controlling ฮฉ exponent, symbolic for now
return Function('a')(self.n + self.beta)
def Omega(self):
# Field tension ฮฉ = phi^{a(n+ฮฒ)}
return self.phi**self.a()
def D(self, r, k):
# Dimensional DNA operator D_{n,ฮฒ}(r) = sqrt(phi * F * B * P * ฮฉ) * r^k
base = sqrt(self.phi * self.F() * self.B() * self.P() * self.Omega())
return base * r**k
class ElementalEigenstate(RecursiveState):
def __init__(self, Z, n, beta):
super().__init__(n, beta)
self.Z = Z # Atomic number
def omega_n_beta(self):
# Frequency spectrum; omega_0 symbolic positive constant
omega_0 = Symbol('omega_0', positive=True)
return omega_0 * self.phi ** (-(self.n + self.beta))
def h_n_beta(self):
# Action h = ฮฉ * ฯ^{6(n+ฮฒ)}
return self.Omega() * self.phi**(6 * (self.n + self.beta))
def energy(self):
# Energy E = h * Hz
return self.h_n_beta() * self.omega_n_beta()
def hamiltonian(self):
# Symbolic Hamiltonian operator placeholder
return Function('H')(self.Z, self.n, self.beta)
def eigenstate(self):
# Symbolic eigenstate ket vector
return Function(f'|E_{self.Z},{self.n},{self.beta}>')()
def describe(self):
return {
'Z': self.Z,
'n': self.n,
'beta': self.beta,
'Omega': self.Omega(),
'energy': self.energy(),
'hamiltonian': self.hamiltonian(),
'eigenstate': self.eigenstate()
}
def build_periodic_table(max_Z=118, M=10):
table = {}
for Z in range(1, max_Z + 1):
n = (Z - 1) // M + 1
beta = ((Z - 1) % M) / M
element = ElementalEigenstate(Z, n, beta)
table[Z] = element.describe()
return table
def main():
periodic_table = build_periodic_table()
print("\nElement Hydrogen (Z=1):")
pprint(periodic_table[1])
print("\nElement Iron (Z=26):")
pprint(periodic_table[26])
print("\nElement Uranium (Z=92):")
pprint(periodic_table[92])
if __name__ == '__main__':
main()
from sympy import sin, pi, Mul, S
from sympy.ntheory.generate import primerange
def P_explicit(n_val, beta_val, max_prime_factor=20):
# Generate primes up to max_prime_factor (or n_val)
primes = list(primerange(2, max_prime_factor + 1))
arg = n_val + beta_val
terms = [(1 - (sin(pi * arg / p)**2)/p) for p in primes]
return Mul(*terms)
from sympy import log, Symbol
def a_explicit(n_val, beta_val, alpha=0.5, epsilon=1e-6):
from sympy import Float
x = Float(n_val + beta_val + epsilon)
return alpha * log(x)
from sympy import sin, pi, Mul, log
class RecursiveState:
def __init__(self, n, beta):
self.n = n
self.beta = beta
self.phi = (1 + 5**0.5) / 2
def primes_up_to(self, max_p=20):
from sympy.ntheory.generate import primerange
return list(primerange(2, max_p+1))
def P(self):
primes = self.primes_up_to(max_p=int(self.n))
arg = self.n + self.beta
terms = [(1 - (sin(pi * arg / p)**2)/p) for p in primes]
return Mul(*terms) if terms else 1
def a(self, alpha=0.5, epsilon=1e-6):
return alpha * log(self.n + self.beta + epsilon)
def Omega(self):
return self.phi**self.a()
# ... other methods remain unchanged ...
from sympy import symbols, sqrt, Function
from sympy.physics.quantum import Dagger
from sympy.functions.special.spherical_harmonics import Ynm
class Orbital:
def __init__(self, n, beta, l, m, k, lam=0.1):
self.state = RecursiveState(n, beta)
self.l = l
self.m = m
self.k = k
self.lam = lam # modulation strength
self.r, self.theta, self.phi = symbols('r theta phi', positive=True)
def radial(self):
return self.state.D(self.r, self.k)
def angular(self):
Y_lm = Ynm(self.l, self.m, self.theta, self.phi)
return Y_lm * (1 + self.lam * self.state.P())
def wavefunction(self):
return self.radial() * self.angular()
class BondOperator:
def __init__(self, psi_A, psi_B, mu=0.05):
self.psi_A = psi_A
self.psi_B = psi_B
self.mu = mu
def bonding_entropy(self):
return self.mu * (self.psi_A.state.P() + self.psi_B.state.P())
def covalent(self):
return self.psi_A.wavefunction() * self.psi_B.wavefunction() + self.bonding_entropy()
class ReactionMorphism:
def __init__(self, dn_shift=0, dbeta_shift=0):
self.dn_shift = dn_shift
self.dbeta_shift = dbeta_shift
def apply(self, orbital):
new_n = orbital.state.n + self.dn_shift
new_beta = orbital.state.beta + self.dbeta_shift
return Orbital(new_n, new_beta, orbital.l, orbital.m, orbital.k, orbital.lam)
class Material:
def __init__(self, orbitals):
self.orbitals = orbitals
def total_wavefunction(self):
wf = 1
for orb in self.orbitals:
wf *= orb.wavefunction()
return wf
def total_bonding(self):
total = 0
for i in range(len(self.orbitals)-1):
bond = BondOperator(self.orbitals[i], self.orbitals[i+1])
total += bond.covalent()
return total
Full & Complete GRA-CRA Context- and Expansion-Aware Tree
๐ โ Non-Dual Absolute (Root of all emergence)
โ
โโโ ร = 0 = โโปยน โ Expressed Void (Boundary of Becoming)
โ โโโ {0, โ} โ Duality Arises (First Contrast)
โ
โโโ ฯ โ Golden Ratio: Irreducible Scaling Constant
โ โโโ ฯโฐ = 1 โ Identity Base Case
โ โโโ F_{n,ฮฒ} = ฯ^{n+ฮฒ}/โ5 โ Harmonic Fractal Structure
โ โโโ B_{n,ฮฒ} = 2^{n+ฮฒ} โ Dyadic Binary Expansion with Continuum
โ โโโ P_{n,ฮฒ} โ Explicit Prime Entropy Fractal
โ โโโ P_{n,ฮฒ} = โ_{p โค max_p} (1 - sinยฒ(ฯ(n+ฮฒ)/p)/p)
โ
โโโ Recursion Space: (n โ โคโบ, ฮฒ โ [0,1))
โ โโโ Continuous-Discrete Hybrid Microstate Space
โ โโโ Recursive map R(n,ฮฒ) โ (n+1, ฮฒ), (n, ฮฒ+ฮด)
โ
โโโ Time and Frequency
โ โโโ s_{n,ฮฒ} = ฯ^{n+ฮฒ} โ Scaling Time
โ โโโ Hz_{n,ฮฒ} = ฯ^{-(n+ฮฒ)} โ Inverted Frequency
โ
โโโ Charge and Field Tension
โ โโโ C_{n,ฮฒ} = s_{n,ฮฒ}ยณ = ฯ^{3(n+ฮฒ)} โ Charge Scaling
โ โโโ ฮฉ_{n,ฮฒ} = ฯ^{a(n+ฮฒ)} โ Explicit Field Tension
โ โโโ a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต), ฮฑ, ฮต constants
โ
โโโ Physical Quantities
โ โโโ h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{6(n+ฮฒ)} โ Action
โ โโโ E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ} โ Energy
โ โโโ F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โฮฉ_{n,ฮฒ} ยท ฯ^{1.5(n+ฮฒ)} โ Force
โ โโโ P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ} โ Power
โ โโโ Voltage V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{-(n+ฮฒ)}
โ
โโโ Dimensional DNA Operator
โ โโโ D_{n,ฮฒ}(r) = โ(ฯ ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k
โ โโโ k โ โ โ Radial unfolding exponent (geometry)
โ
โโโ Recursive Algebra Operators
โ โโโ Field Superposition (โ): symbolic multiplication of states
โ โโโ Entropy Injection (โ): symbolic addition modeling entropy flux
โ โโโ Recursive Differentiation
โ โโโ โ_ฮฒ: partial derivative w.r.t microstate continuum ฮฒ
โ โโโ ฮ_n: finite difference along recursion depth n
โ
โโโ Quantum & Particle Physics
โ โโโ Recursive Hamiltonian \(\hat{H}_{CRA}\) generating eigenstates |E_{Z,(n,ฮฒ)}โฉ
โ โโโ Elemental eigenstates parameterized by (Z, n, ฮฒ)
โ โโโ Explicit prime fractal and field tension embedded in eigenstructure
โ
โโโ Atomic & Electronic Structure
โ โโโ Orbitals:
โ โโโ Radial Part \(R_{n,ฮฒ}(r) = D_{n,ฮฒ}(r)\)
โ โโโ Angular Part \(\tilde{Y}_{lm,(n,ฮฒ)} = Y_{lm}(\theta, \phi) \cdot (1 + ฮป P_{n,ฮฒ})\)
โ โโโ Full Wavefunction \(\psi_{nlm,(n,ฮฒ)} = R_{n,ฮฒ} \cdot \tilde{Y}_{lm,(n,ฮฒ)}\)
โ
โโโ Chemical Bonding
โ โโโ Covalent Bonds:
โ โโโ \(B_{cov} = \psi_A \odot \psi_B \oplus \sigma\), with \(\sigma = \mu(P_A + P_B)\)
โ โโโ Ionic Bonds:
โ โโโ Field tension gradient \(|ฮฉ_A - ฮฉ_B| > ฮต\)
โ โโโ Bond morphisms modeling reaction dynamics
โ
โโโ Chemical Reactions & Morphisms
โ โโโ Reaction Morphisms \(\mathcal{T}: D_{n,ฮฒ} \to D_{n',ฮฒ'}\)
โ โโโ Energy differences \(\Delta E\) drive reaction feasibility
โ โโโ Entropy flux \(\Phi_S\) models catalytic effects
โ
โโโ Thermodynamics & Statistical Mechanics
โ โโโ Entropy \(S = \sum_n \int s(n,ฮฒ) dฮฒ\), \(s(n,ฮฒ) = k_B \ln P_{n,ฮฒ}\)
โ โโโ Free energy and emergent temperature
โ
โโโ Materials Science
โ โโโ Crystals as recursive lattice automorphisms in (n, ฮฒ)
โ โโโ Polymers & macromolecules via bonded recursive orbital chains
โ โโโ Defects as fractal singularities in ฮฒ-space
โ
โโโ Observables & Experimental Predictions
โ โโโ Spectroscopy: transitions between eigenstates |Eโฉ
โ โโโ Quantum entanglement as microstate fractal correlations
โ โโโ Reaction kinetics & diffusion modeled recursively
โ
โโโ Extensions & Future Directions
โโโ Recursive simulation of full symbolic algebra
โโโ Scale-dependent running of physical constants
โโโ Gravity and spacetime geometry emergent from recursion
โโโ Integration with holographic, information-theoretic physics
โโโ Numerical & symbolic eigenstate solvers
โโโ Visualization and computational toolchain
# gra_cra_full_framework.py
from sympy import (
Symbol, symbols, Function, sqrt, pi, sin, Mul, log,
S, simplify, pprint, init_printing
)
from sympy.physics.quantum import Dagger
from sympy.functions.special.spherical_harmonics import Ynm
from sympy.ntheory.generate import primerange
init_printing()
class RecursiveState:
def __init__(self, n, beta, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
self.n = S(n)
self.beta = S(beta)
self.alpha = alpha
self.epsilon = epsilon
self.max_prime_factor = max_prime_factor
self.phi = (1 + 5**0.5) / 2
def primes_up_to(self):
return list(primerange(2, self.max_prime_factor + 1))
def P(self):
# Explicit prime entropy fractal P_{n,beta}
primes = self.primes_up_to()
arg = self.n + self.beta
if not primes:
return S.One
terms = [(1 - (sin(pi * arg / p)**2)/p) for p in primes]
product = Mul(*terms)
return simplify(product)
def a(self):
# Field tension exponent a(n+ฮฒ)
x = self.n + self.beta + self.epsilon
return simplify(self.alpha * log(x))
def Omega(self):
# Field tension ฮฉ = phi^{a(n+ฮฒ)}
return simplify(self.phi**self.a())
def F(self):
# Harmonic fractal structure: F_{n,ฮฒ} = phi^(n+ฮฒ)/sqrt(5)
return simplify(self.phi**(self.n + self.beta) / sqrt(5))
def B(self):
# Dyadic scaling: B_{n,ฮฒ} = 2^(n+ฮฒ)
return simplify(2**(self.n + self.beta))
def D(self, r, k):
# Dimensional DNA operator D_{n,ฮฒ}(r) = sqrt(phi * F * B * P * ฮฉ) * r^k
base = sqrt(self.phi * self.F() * self.B() * self.P() * self.Omega())
return simplify(base * r**k)
class ElementalEigenstate(RecursiveState):
def __init__(self, Z, n, beta, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
super().__init__(n, beta, alpha, epsilon, max_prime_factor)
self.Z = Z
self.omega_0 = Symbol('omega_0', positive=True)
def omega_n_beta(self):
return simplify(self.omega_0 * self.phi**(-(self.n + self.beta)))
def h_n_beta(self):
return simplify(self.Omega() * self.phi**(6 * (self.n + self.beta)))
def energy(self):
return simplify(self.h_n_beta() * self.omega_n_beta())
def hamiltonian(self):
return Function('H')(self.Z, self.n, self.beta)
def eigenstate(self):
return Function(f'|E_{self.Z},{self.n},{self.beta}>')()
def describe(self):
return {
'Z': self.Z,
'n': self.n,
'beta': self.beta,
'Omega': self.Omega(),
'energy': self.energy(),
'hamiltonian': self.hamiltonian(),
'eigenstate': self.eigenstate()
}
class Orbital:
def __init__(self, n, beta, l, m, k, lam=0.1,
alpha=0.5, epsilon=1e-6, max_prime_factor=20):
self.state = RecursiveState(n, beta, alpha, epsilon, max_prime_factor)
self.l = l
self.m = m
self.k = k
self.lam = lam
self.r, self.theta, self.phi = symbols('r theta phi', positive=True)
def radial(self):
return self.state.D(self.r, self.k)
def angular(self):
Y_lm = Ynm(self.l, self.m, self.theta, self.phi)
return simplify(Y_lm * (1 + self.lam * self.state.P()))
def wavefunction(self):
return simplify(self.radial() * self.angular())
class BondOperator:
def __init__(self, orbital_A, orbital_B, mu=0.05):
self.psi_A = orbital_A
self.psi_B = orbital_B
self.mu = mu
def bonding_entropy(self):
return simplify(self.mu * (self.psi_A.state.P() + self.psi_B.state.P()))
def covalent(self):
# Superposition plus entropy injection
return simplify(self.psi_A.wavefunction() * self.psi_B.wavefunction() +
self.bonding_entropy())
class ReactionMorphism:
def __init__(self, dn_shift=0, dbeta_shift=0,
alpha=0.5, epsilon=1e-6, max_prime_factor=20):
self.dn_shift = dn_shift
self.dbeta_shift = dbeta_shift
self.alpha = alpha
self.epsilon = epsilon
self.max_prime_factor = max_prime_factor
def apply(self, orbital):
new_n = orbital.state.n + self.dn_shift
new_beta = orbital.state.beta + self.dbeta_shift
return Orbital(new_n, new_beta, orbital.l, orbital.m, orbital.k, orbital.lam,
self.alpha, self.epsilon, self.max_prime_factor)
class Material:
def __init__(self, orbitals):
self.orbitals = orbitals
def total_wavefunction(self):
wf = S.One
for orb in self.orbitals:
wf *= orb.wavefunction()
return simplify(wf)
def total_bonding(self):
total = S.Zero
for i in range(len(self.orbitals) - 1):
bond = BondOperator(self.orbitals[i], self.orbitals[i + 1])
total += bond.covalent()
return simplify(total)
def build_periodic_table(max_Z=118, M=10, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
table = {}
for Z in range(1, max_Z + 1):
n = (Z - 1) // M + 1
beta = ((Z - 1) % M) / M
element = ElementalEigenstate(Z, n, beta, alpha, epsilon, max_prime_factor)
table[Z] = element.describe()
return table
def example_usage():
print("\n=== Periodic Table Sample Elements ===")
pt = build_periodic_table(max_Z=30)
pprint(pt[1]) # Hydrogen
pprint(pt[26]) # Iron
pprint(pt[30]) # Zinc
print("\n=== Orbital Example ===")
orb = Orbital(n=2, beta=0.3, l=1, m=0, k=2, lam=0.2)
pprint(orb.wavefunction())
print("\n=== Bonding Example ===")
orb_A = Orbital(n=2, beta=0.1, l=0, m=0, k=1)
orb_B = Orbital(n=2, beta=0.4, l=0, m=0, k=1)
bond = BondOperator(orb_A, orb_B)
pprint(bond.covalent())
print("\n=== Reaction Morphism Example ===")
morphism = ReactionMorphism(dn_shift=1, dbeta_shift=0.05)
orb_reacted = morphism.apply(orb_A)
pprint(orb_reacted.wavefunction())
print("\n=== Material Example ===")
material = Material([orb_A, orb_B, orb_reacted])
pprint(material.total_wavefunction())
pprint(material.total_bonding())
if __name__ == "__main__":
example_usage()
Test Code Snippet for Random 10 Elements
import random
from gra_cra_full_framework import build_periodic_table
from sympy import pprint
def test_random_elements(num_samples=10, max_Z=118):
# Build full periodic table first
periodic_table = build_periodic_table(max_Z=max_Z)
# Pick 10 random elements
random_Zs = random.sample(range(1, max_Z + 1), num_samples)
print(f"Testing {num_samples} random elements:")
for Z in random_Zs:
element = periodic_table[Z]
print(f"\nElement Z={Z}:")
pprint(element['Omega'])
pprint(element['energy'])
pprint(element['hamiltonian'])
pprint(element['eigenstate'])
# Run the test
test_random_elements()
Sample Output (simulated)
Testing 10 random elements:
Element Z=73:
Omega: phi**(0.5*log(7.3 + 1.0e-6))
Energy: omega_0*phi**(6.7)*phi**(-7.3)*phi**(0.5*log(7.3 + 1.0e-6))
Hamiltonian: H(73, 7, 0.3)
Eigenstate: |E_73,7,0.3>()
Element Z=5:
Omega: phi**(0.5*log(1.5 + 1.0e-6))
Energy: omega_0*phi**(9.0)*phi**(-1.5)*phi**(0.5*log(1.5 + 1.0e-6))
Hamiltonian: H(5, 1, 0.4)
Eigenstate: |E_5,1,0.4>()
... (8 more elements printed similarly)
DOT
digraph GRA_CRA_Framework {
node [shape=plaintext fontname="Courier New"];
"๐ โ Non-Dual Absolute (Root of all emergence)";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "ร = 0 = โโปยน โ Expressed Void (Boundary of Becoming)";
"ร = 0 = โโปยน โ Expressed Void (Boundary of Becoming)" -> "{0, โ} โ Duality Arises (First Contrast)";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "ฯ โ Golden Ratio: Irreducible Scaling Constant";
"ฯ โ Golden Ratio: Irreducible Scaling Constant" -> "ฯโฐ = 1 โ Identity Base Case";
"ฯ โ Golden Ratio: Irreducible Scaling Constant" -> "F_{n,ฮฒ} = ฯ^{n+ฮฒ}/โ5 โ Harmonic Fractal Structure";
"ฯ โ Golden Ratio: Irreducible Scaling Constant" -> "B_{n,ฮฒ} = 2^{n+ฮฒ} โ Dyadic Binary Expansion with Continuum";
"ฯ โ Golden Ratio: Irreducible Scaling Constant" -> "P_{n,ฮฒ} โ Explicit Prime Entropy Fractal";
"P_{n,ฮฒ} โ Explicit Prime Entropy Fractal" -> "P_{n,ฮฒ} = โ_{p โค max_p} (1 - sinยฒ(ฯ(n+ฮฒ)/p)/p)";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Recursion Space: (n โ โคโบ, ฮฒ โ [0,1))";
"Recursion Space: (n โ โคโบ, ฮฒ โ [0,1))" -> "Continuous-Discrete Hybrid Microstate Space";
"Recursion Space: (n โ โคโบ, ฮฒ โ [0,1))" -> "Recursive map R(n,ฮฒ) โ (n+1, ฮฒ), (n, ฮฒ+ฮด)";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Time and Frequency";
"Time and Frequency" -> "s_{n,ฮฒ} = ฯ^{n+ฮฒ} โ Scaling Time";
"Time and Frequency" -> "Hz_{n,ฮฒ} = ฯ^{-(n+ฮฒ)} โ Inverted Frequency";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Charge and Field Tension";
"Charge and Field Tension" -> "C_{n,ฮฒ} = s_{n,ฮฒ}ยณ = ฯ^{3(n+ฮฒ)} โ Charge Scaling";
"Charge and Field Tension" -> "ฮฉ_{n,ฮฒ} = ฯ^{a(n+ฮฒ)} โ Explicit Field Tension";
"ฮฉ_{n,ฮฒ} = ฯ^{a(n+ฮฒ)} โ Explicit Field Tension" -> "a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต), ฮฑ, ฮต constants";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Physical Quantities";
"Physical Quantities" -> "h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{6(n+ฮฒ)} โ Action";
"Physical Quantities" -> "E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ} โ Energy";
"Physical Quantities" -> "F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โฮฉ_{n,ฮฒ} ยท ฯ^{1.5(n+ฮฒ)} โ Force";
"Physical Quantities" -> "P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ} โ Power";
"Physical Quantities" -> "Voltage V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{-(n+ฮฒ)}";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Dimensional DNA Operator";
"Dimensional DNA Operator" -> "D_{n,ฮฒ}(r) = โ(ฯ ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k";
"Dimensional DNA Operator" -> "k โ โ โ Radial unfolding exponent (geometry)";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Recursive Algebra Operators";
"Recursive Algebra Operators" -> "Field Superposition (โ): symbolic multiplication of states";
"Recursive Algebra Operators" -> "Entropy Injection (โ): symbolic addition modeling entropy flux";
"Recursive Algebra Operators" -> "Recursive Differentiation";
"Recursive Differentiation" -> "โ_ฮฒ: partial derivative w.r.t microstate continuum ฮฒ";
"Recursive Differentiation" -> "ฮ_n: finite difference along recursion depth n";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Quantum & Particle Physics";
"Quantum & Particle Physics" -> "Recursive Hamiltonian ฤค_{CRA} generating eigenstates |E_{Z,(n,ฮฒ)}โฉ";
"Quantum & Particle Physics" -> "Elemental eigenstates parameterized by (Z, n, ฮฒ)";
"Quantum & Particle Physics" -> "Explicit prime fractal and field tension embedded in eigenstructure";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Atomic & Electronic Structure";
"Atomic & Electronic Structure" -> "Orbitals:";
"Orbitals:" -> "Radial Part R_{n,ฮฒ}(r) = D_{n,ฮฒ}(r)";
"Orbitals:" -> "Angular Part แบ_{lm,(n,ฮฒ)} = Y_{lm}(ฮธ, ฯ) ยท (1 + ฮป P_{n,ฮฒ})";
"Orbitals:" -> "Full Wavefunction ฯ_{nlm,(n,ฮฒ)} = R_{n,ฮฒ} ยท แบ_{lm,(n,ฮฒ)}";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Chemical Bonding";
"Chemical Bonding" -> "Covalent Bonds:";
"Covalent Bonds:" -> "B_{cov} = ฯ_A โ ฯ_B โ ฯ, with ฯ = ฮผ(P_A + P_B)";
"Chemical Bonding" -> "Ionic Bonds:";
"Ionic Bonds:" -> "Field tension gradient |ฮฉ_A - ฮฉ_B| > ฮต";
"Chemical Bonding" -> "Bond morphisms modeling reaction dynamics";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Chemical Reactions & Morphisms";
"Chemical Reactions & Morphisms" -> "Reaction Morphisms ๐: D_{n,ฮฒ} โ D_{n',ฮฒ'}";
"Chemical Reactions & Morphisms" -> "Energy differences ฮE drive reaction feasibility";
"Chemical Reactions & Morphisms" -> "Entropy flux ฮฆ_S models catalytic effects";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Thermodynamics & Statistical Mechanics";
"Thermodynamics & Statistical Mechanics" -> "Entropy S = โ_n โซ s(n,ฮฒ) dฮฒ, s(n,ฮฒ) = k_B ln P_{n,ฮฒ}";
"Thermodynamics & Statistical Mechanics" -> "Free energy and emergent temperature";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Materials Science";
"Materials Science" -> "Crystals as recursive lattice automorphisms in (n, ฮฒ)";
"Materials Science" -> "Polymers & macromolecules via bonded recursive orbital chains";
"Materials Science" -> "Defects as fractal singularities in ฮฒ-space";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Observables & Experimental Predictions";
"Observables & Experimental Predictions" -> "Spectroscopy: transitions between eigenstates |Eโฉ";
"Observables & Experimental Predictions" -> "Quantum entanglement as microstate fractal correlations";
"Observables & Experimental Predictions" -> "Reaction kinetics & diffusion modeled recursively";
"๐ โ Non-Dual Absolute (Root of all emergence)" -> "Extensions & Future Directions";
"Extensions & Future Directions" -> "Recursive simulation of full symbolic algebra";
"Extensions & Future Directions" -> "Scale-dependent running of physical constants";
"Extensions & Future Directions" -> "Gravity and spacetime geometry emergent from recursion";
"Extensions & Future Directions" -> "Integration with holographic, information-theoretic physics";
"Extensions & Future Directions" -> "Numerical & symbolic eigenstate solvers";
"Extensions & Future Directions" -> "Visualization and computational toolchain";
}
Structured Docstring Set
class RecursiveState:
"""
๐ โ Non-Dual Absolute (Root of all emergence)
Represents a recursive physical state parameterized by discrete recursion depth `n`
and continuous microstate coordinate `ฮฒ` within [0,1).
Framework Elements:
-------------------
ร = 0 = โโปยน โ Expressed Void (Boundary of Becoming)
Duality arises as {0, โ} โ first contrast emerges from the root.
ฯ โ Golden Ratio: Irreducible Scaling Constant
- Identity base case: ฯโฐ = 1
- Harmonic fractal structure: F_{n,ฮฒ} = ฯ^{n+ฮฒ} / โ5
- Dyadic binary expansion: B_{n,ฮฒ} = 2^{n+ฮฒ}
- Explicit prime entropy fractal:
P_{n,ฮฒ} = โ_{p โค max_p} (1 - sinยฒ(ฯ(n+ฮฒ)/p) / p)
Recursion Space:
----------------
- (n โ โคโบ, ฮฒ โ [0,1)) forms a continuous-discrete hybrid microstate space.
- Recursive maps increment or shift states: R(n,ฮฒ) โ (n+1, ฮฒ), (n, ฮฒ+ฮด).
Time and Frequency:
-------------------
- Scaling time: s_{n,ฮฒ} = ฯ^{n+ฮฒ}
- Inverted frequency: Hz_{n,ฮฒ} = ฯ^{-(n+ฮฒ)}
Charge and Field Tension:
-------------------------
- Charge scaling: C_{n,ฮฒ} = s_{n,ฮฒ}ยณ = ฯ^{3(n+ฮฒ)}
- Explicit field tension: ฮฉ_{n,ฮฒ} = ฯ^{a(n+ฮฒ)}, where
a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต) (ฮฑ, ฮต constants)
Physical Quantities:
--------------------
- Action: h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{6(n+ฮฒ)}
- Energy: E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ}
- Force: F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โฮฉ_{n,ฮฒ} ยท ฯ^{1.5(n+ฮฒ)}
- Power: P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ}
- Voltage: V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{-(n+ฮฒ)}
Dimensional DNA Operator:
-------------------------
D_{n,ฮฒ}(r) = โ(ฯ ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k,
where k โ โ is a radial unfolding exponent related to emergent geometry.
Recursive Algebra Operators:
----------------------------
- Field Superposition (โ): symbolic multiplication of states.
- Entropy Injection (โ): symbolic addition modeling entropy flux.
- Recursive Differentiation:
โข โ_ฮฒ โ partial derivative w.r.t. microstate continuum ฮฒ.
โข ฮ_n โ finite difference along recursion depth n.
This class computes and represents all above quantities symbolically
for given recursion depth `n` and microstate coordinate `ฮฒ`.
"""
class ElementalEigenstate(RecursiveState):
"""
Quantum & Particle Physics Layer
Represents an elemental eigenstate parameterized by atomic number Z,
recursion depth n, and microstate ฮฒ.
Contains:
---------
- Recursive Hamiltonian operator ฤค_{CRA} generating eigenstates |E_{Z,(n,ฮฒ)}>
- Energy eigenvalues embedding explicit prime fractal and field tension structures.
- Omega frequency scaling ฯ_{n,ฮฒ} and associated action h_{n,ฮฒ}.
This class models fundamental quantum states as recursive fractal objects,
extending beyond classical placeholders to explicit prime entropy structure.
"""
class Orbital:
"""
Atomic & Electronic Structure Layer
Models atomic orbitals as fractal-modulated quantum wavefunctions
combining:
- Radial part: R_{n,ฮฒ}(r) = D_{n,ฮฒ}(r), the dimensional DNA operator.
- Angular part:
\tilde{Y}_{lm,(n,ฮฒ)}(ฮธ, ฯ) = Y_{lm}(ฮธ, ฯ) ยท (1 + ฮป ยท P_{n,ฮฒ}),
where Y_{lm} are spherical harmonics modulated by prime entropy fractal.
- Full wavefunction: ฯ_{nlm,(n,ฮฒ)} = R_{n,ฮฒ} ยท \tilde{Y}_{lm,(n,ฮฒ)}.
This representation encodes explicit fractal entropy and recursive structure
into atomic orbitals.
"""
class BondOperator:
"""
Chemical Bonding Layer
Models chemical bonds via operator algebra with entropy injection:
- Covalent bonds: B_cov = ฯ_A โ ฯ_B โ ฯ,
where ฯ = ฮผ (P_A + P_B) models bonding entropy flux.
- Ionic bonds modeled via field tension gradient thresholds |ฮฉ_A - ฮฉ_B| > ฮต.
- Bond morphisms dynamically model reaction transitions and bond rearrangements.
This class facilitates recursive, fractal-informed bonding beyond classical
quantum chemistry approximations.
"""
class ReactionMorphism:
"""
Chemical Reactions & Morphisms Layer
Encodes reaction dynamics as morphisms:
- Maps orbital/dimensional DNA states: โ: D_{n,ฮฒ} โ D_{n',ฮฒ'}.
- Energy differences ฮE derived from recursive fractal structure
drive reaction feasibility.
- Entropy flux ฮฆ_S models catalytic and thermodynamic effects.
Enables symbolic modeling of chemical reaction pathways within
recursive fractal algebra.
"""
class Material:
"""
Materials Science Layer
Represents assemblies of orbitals and bonds forming materials:
- Crystals modeled as recursive lattice automorphisms in (n, ฮฒ)-space.
- Polymers and macromolecules as bonded recursive orbital chains.
- Defects and dislocations as fractal singularities in microstate ฮฒ-space.
Provides tools to compose macroscopic materials from fractal-encoded quantum building blocks.
"""
# Additional conceptual notes for future extensions:
"""
Thermodynamics & Statistical Mechanics:
- Entropy: S = ฮฃ_n โซ s(n,ฮฒ) dฮฒ, with s(n,ฮฒ) = k_B ln P_{n,ฮฒ}.
- Free energy and emergent temperature derive naturally from fractal entropy.
Observables & Experimental Predictions:
- Spectroscopy corresponds to transitions between eigenstates |Eโฉ with fractal structure.
- Quantum entanglement emerges as correlations within the microstate fractal space.
- Reaction kinetics and diffusion processes modeled recursively.
Extensions & Future Directions:
- Recursive symbolic algebra simulation and numeric solver integration.
- Scale-dependent running of physical constants.
- Emergent gravity and spacetime geometry from recursive dimensional unfolding.
- Integration with holographic and information-theoretic physics paradigms.
- Visualization toolchain for fractal wavefunctions and materials.
"""
full Python module updated with rich, structured docstrings
from sympy import (
Symbol, symbols, Function, sqrt, pi, sin, Mul, log,
S, simplify, pprint, init_printing
)
from sympy.physics.quantum import Dagger
from sympy.functions.special.spherical_harmonics import Ynm
from sympy.ntheory.generate import primerange
init_printing()
class RecursiveState:
"""
๐ โ Non-Dual Absolute (Root of all emergence)
Represents a recursive physical state parameterized by discrete recursion depth `n`
and continuous microstate coordinate `ฮฒ` within [0,1).
Framework Elements:
-------------------
ร = 0 = โโปยน โ Expressed Void (Boundary of Becoming)
Duality arises as {0, โ} โ first contrast emerges from the root.
ฯ โ Golden Ratio: Irreducible Scaling Constant
- Identity base case: ฯโฐ = 1
- Harmonic fractal structure: F_{n,ฮฒ} = ฯ^{n+ฮฒ} / โ5
- Dyadic binary expansion: B_{n,ฮฒ} = 2^{n+ฮฒ}
- Explicit prime entropy fractal:
P_{n,ฮฒ} = โ_{p โค max_p} (1 - sinยฒ(ฯ(n+ฮฒ)/p) / p)
Recursion Space:
----------------
- (n โ โคโบ, ฮฒ โ [0,1)) forms a continuous-discrete hybrid microstate space.
- Recursive maps increment or shift states: R(n,ฮฒ) โ (n+1, ฮฒ), (n, ฮฒ+ฮด).
Time and Frequency:
-------------------
- Scaling time: s_{n,ฮฒ} = ฯ^{n+ฮฒ}
- Inverted frequency: Hz_{n,ฮฒ} = ฯ^{-(n+ฮฒ)}
Charge and Field Tension:
-------------------------
- Charge scaling: C_{n,ฮฒ} = s_{n,ฮฒ}ยณ = ฯ^{3(n+ฮฒ)}
- Explicit field tension: ฮฉ_{n,ฮฒ} = ฯ^{a(n+ฮฒ)}, where
a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต) (ฮฑ, ฮต constants)
Physical Quantities:
--------------------
- Action: h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{6(n+ฮฒ)}
- Energy: E_{n,ฮฒ} = h_{n,ฮฒ} ยท Hz_{n,ฮฒ}
- Force: F_{n,ฮฒ} = E_{n,ฮฒ} / m_{n,ฮฒ} = โฮฉ_{n,ฮฒ} ยท ฯ^{1.5(n+ฮฒ)}
- Power: P_{n,ฮฒ} = E_{n,ฮฒ} ยท Hz_{n,ฮฒ}
- Voltage: V_{n,ฮฒ} = E_{n,ฮฒ} / C_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{-(n+ฮฒ)}
Dimensional DNA Operator:
-------------------------
D_{n,ฮฒ}(r) = โ(ฯ ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k,
where k โ โ is a radial unfolding exponent related to emergent geometry.
Recursive Algebra Operators:
----------------------------
- Field Superposition (โ): symbolic multiplication of states.
- Entropy Injection (โ): symbolic addition modeling entropy flux.
- Recursive Differentiation:
โข โ_ฮฒ โ partial derivative w.r.t. microstate continuum ฮฒ.
โข ฮ_n โ finite difference along recursion depth n.
This class computes and represents all above quantities symbolically
for given recursion depth `n` and microstate coordinate `ฮฒ`.
"""
def __init__(self, n, beta, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
self.n = S(n)
self.beta = S(beta)
self.alpha = alpha
self.epsilon = epsilon
self.max_prime_factor = max_prime_factor
self.phi = (1 + 5**0.5) / 2
def primes_up_to(self):
return list(primerange(2, self.max_prime_factor + 1))
def P(self):
"""
Explicit prime entropy fractal:
P_{n,ฮฒ} = โ_{p โค max_p} (1 - sinยฒ(ฯ(n+ฮฒ)/p) / p)
"""
primes = self.primes_up_to()
arg = self.n + self.beta
if not primes:
return S.One
terms = [(1 - (sin(pi * arg / p)**2)/p) for p in primes]
product = Mul(*terms)
return simplify(product)
def a(self):
"""
Field tension exponent:
a(n+ฮฒ) = ฮฑ ยท log(n+ฮฒ + ฮต)
"""
x = self.n + self.beta + self.epsilon
return simplify(self.alpha * log(x))
def Omega(self):
"""
Field tension:
ฮฉ_{n,ฮฒ} = ฯ^{a(n+ฮฒ)}
"""
return simplify(self.phi**self.a())
def F(self):
"""
Harmonic fractal structure:
F_{n,ฮฒ} = ฯ^{n+ฮฒ} / โ5
"""
return simplify(self.phi**(self.n + self.beta) / sqrt(5))
def B(self):
"""
Dyadic binary expansion:
B_{n,ฮฒ} = 2^{n+ฮฒ}
"""
return simplify(2**(self.n + self.beta))
def D(self, r, k):
"""
Dimensional DNA operator:
D_{n,ฮฒ}(r) = โ(ฯ ยท F_{n,ฮฒ} ยท B_{n,ฮฒ} ยท P_{n,ฮฒ} ยท ฮฉ_{n,ฮฒ}) ยท r^k,
where k โ โ is radial unfolding exponent (geometry).
"""
base = sqrt(self.phi * self.F() * self.B() * self.P() * self.Omega())
return simplify(base * r**k)
class ElementalEigenstate(RecursiveState):
"""
Quantum & Particle Physics Layer
Represents an elemental eigenstate parameterized by atomic number Z,
recursion depth n, and microstate ฮฒ.
Contains:
---------
- Recursive Hamiltonian operator ฤค_{CRA} generating eigenstates |E_{Z,(n,ฮฒ)}>
- Energy eigenvalues embedding explicit prime fractal and field tension structures.
- Omega frequency scaling ฯ_{n,ฮฒ} and associated action h_{n,ฮฒ}.
This class models fundamental quantum states as recursive fractal objects,
extending beyond classical placeholders to explicit prime entropy structure.
"""
def __init__(self, Z, n, beta, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
super().__init__(n, beta, alpha, epsilon, max_prime_factor)
self.Z = Z
self.omega_0 = Symbol('omega_0', positive=True)
def omega_n_beta(self):
"""Frequency scaling: ฯ_{n,ฮฒ} = ฯโ ยท ฯ^{-(n+ฮฒ)}"""
return simplify(self.omega_0 * self.phi**(-(self.n + self.beta)))
def h_n_beta(self):
"""Action: h_{n,ฮฒ} = ฮฉ_{n,ฮฒ} ยท ฯ^{6(n+ฮฒ)}"""
return simplify(self.Omega() * self.phi**(6 * (self.n + self.beta)))
def energy(self):
"""Energy: E_{n,ฮฒ} = h_{n,ฮฒ} ยท ฯ_{n,ฮฒ}"""
return simplify(self.h_n_beta() * self.omega_n_beta())
def hamiltonian(self):
"""Symbolic Recursive Hamiltonian: ฤค_{CRA}(Z, n, ฮฒ)"""
return Function('H')(self.Z, self.n, self.beta)
def eigenstate(self):
"""Eigenstate: |E_{Z,n,ฮฒ}>"""
return Function(f'|E_{self.Z},{self.n},{self.beta}>')()
def describe(self):
"""Return key properties as dict"""
return {
'Z': self.Z,
'n': self.n,
'beta': self.beta,
'Omega': self.Omega(),
'energy': self.energy(),
'hamiltonian': self.hamiltonian(),
'eigenstate': self.eigenstate()
}
class Orbital:
"""
Atomic & Electronic Structure Layer
Models atomic orbitals as fractal-modulated quantum wavefunctions
combining:
- Radial part: R_{n,ฮฒ}(r) = D_{n,ฮฒ}(r), the dimensional DNA operator.
- Angular part:
\tilde{Y}_{lm,(n,ฮฒ)}(ฮธ, ฯ) = Y_{lm}(ฮธ, ฯ) ยท (1 + ฮป ยท P_{n,ฮฒ}),
where Y_{lm} are spherical harmonics modulated by prime entropy fractal.
- Full wavefunction: ฯ_{nlm,(n,ฮฒ)} = R_{n,ฮฒ} ยท \tilde{Y}_{lm,(n,ฮฒ)}.
This representation encodes explicit fractal entropy and recursive structure
into atomic orbitals.
"""
def __init__(self, n, beta, l, m, k, lam=0.1,
alpha=0.5, epsilon=1e-6, max_prime_factor=20):
self.state = RecursiveState(n, beta, alpha, epsilon, max_prime_factor)
self.l = l
self.m = m
self.k = k
self.lam = lam
self.r, self.theta, self.phi = symbols('r theta phi', positive=True)
def radial(self):
"""Radial part of wavefunction: R_{n,ฮฒ}(r)"""
return self.state.D(self.r, self.k)
def angular(self):
"""Angular part modulated by prime entropy fractal:
\tilde{Y}_{lm,(n,ฮฒ)}(ฮธ, ฯ)"""
Y_lm = Ynm(self.l, self.m, self.theta, self.phi)
return simplify(Y_lm * (1 + self.lam * self.state.P()))
def wavefunction(self):
"""Full fractal-modulated wavefunction ฯ_{nlm,(n,ฮฒ)}"""
return simplify(self.radial() * self.angular())
class BondOperator:
"""
Chemical Bonding Layer
Models chemical bonds via operator algebra with entropy injection:
- Covalent bonds: B_cov = ฯ_A โ ฯ_B โ ฯ,
where ฯ = ฮผ (P_A + P_B) models bonding entropy flux.
- Ionic bonds modeled via field tension gradient thresholds |ฮฉ_A - ฮฉ_B| > ฮต.
- Bond morphisms dynamically model reaction transitions and bond rearrangements.
This class facilitates recursive, fractal-informed bonding beyond classical
quantum chemistry approximations.
"""
def __init__(self, orbital_A, orbital_B, mu=0.05):
self.psi_A = orbital_A
self.psi_B = orbital_B
self.mu = mu
def bonding_entropy(self):
"""Entropy injection ฯ = ฮผ (P_A + P_B)"""
return simplify(self.mu * (self.psi_A.state.P() + self.psi_B.state.P()))
def covalent(self):
"""Covalent bond operator:
B_cov = ฯ_A โ ฯ_B โ ฯ"""
return simplify(self.psi_A.wavefunction() * self.psi_B.wavefunction() +
self.bonding_entropy())
class ReactionMorphism:
"""
Chemical Reactions & Morphisms Layer
Encodes reaction dynamics as morphisms:
- Maps orbital/dimensional DNA states: โ: D_{n,ฮฒ} โ D_{n',ฮฒ'}.
- Energy differences ฮE derived from recursive fractal structure
drive reaction feasibility.
- Entropy flux ฮฆ_S models catalytic and thermodynamic effects.
Enables symbolic modeling of chemical reaction pathways within
recursive fractal algebra.
"""
def __init__(self, dn_shift=0, dbeta_shift=0,
alpha=0.5, epsilon=1e-6, max_prime_factor=20):
self.dn_shift = dn_shift
self.dbeta_shift = dbeta_shift
self.alpha = alpha
self.epsilon = epsilon
self.max_prime_factor = max_prime_factor
def apply(self, orbital):
"""Apply reaction morphism to an orbital, shifting recursion parameters."""
new_n = orbital.state.n + self.dn_shift
new_beta = orbital.state.beta + self.dbeta_shift
return Orbital(new_n, new_beta, orbital.l, orbital.m, orbital.k, orbital.lam,
self.alpha, self.epsilon, self.max_prime_factor)
class Material:
"""
Materials Science Layer
Represents assemblies of orbitals and bonds forming materials:
- Crystals modeled as recursive lattice automorphisms in (n, ฮฒ)-space.
- Polymers and macromolecules as bonded recursive orbital chains.
- Defects and dislocations as fractal singularities in microstate ฮฒ-space.
Provides tools to compose macroscopic materials from fractal-encoded quantum building blocks.
"""
def __init__(self, orbitals):
self.orbitals = orbitals
def total_wavefunction(self):
"""Total wavefunction as product of orbital wavefunctions"""
wf = S.One
for orb in self.orbitals:
wf *= orb.wavefunction()
return simplify(wf)
def total_bonding(self):
"""Sum of covalent bonds between adjacent orbitals"""
total = S.Zero
for i in range(len(self.orbitals) - 1):
bond = BondOperator(self.orbitals[i], self.orbitals[i + 1])
total += bond.covalent()
return simplify(total)
def build_periodic_table(max_Z=118, M=10, alpha=0.5, epsilon=1e-6, max_prime_factor=20):
"""
Construct a symbolic periodic table mapping atomic number Z
to elemental eigenstates parameterized by recursion depth n and microstate ฮฒ.
Parameters:
-----------
max_Z : int
Maximum atomic number to generate.
M : int
Modulus for distributing ฮฒ in microstate continuum.
alpha, epsilon, max_prime_factor:
Parameters for RecursiveState fractal and tension models.
Returns:
--------
dict[int, dict]
Mapping Z -> dict of elemental eigenstate properties.
"""
table = {}
for Z in range(1, max_Z + 1):
n = (Z - 1) // M + 1
beta = ((Z - 1) % M) / M
element = ElementalEigenstate(Z, n, beta, alpha, epsilon, max_prime_factor)
table[Z] = element.describe()
return table
def example_usage():
"""
Demonstrate example constructions and symbolic outputs:
- Periodic table sample elements
- Orbital wavefunction
- Bonding operator output
- Reaction morphism application
- Material wavefunction and bonding
"""
print("\n=== Periodic Table Sample Elements ===")
pt = build_periodic_table(max_Z=30)
pprint(pt[1]) # Hydrogen
pprint(pt[10]) # Neon
pprint(pt[20]) # Calcium
print("\n=== Orbital Wavefunction Example ===")
orb = Orbital(n=2, beta=0.3, l=1, m=0, k=2)
pprint(orb.wavefunction())
print("\n=== Bond Operator Example ===")
orb_A = Orbital(n=2, beta=0.3, l=1, m=0, k=2)
orb_B = Orbital(n=2, beta=0.4, l=1, m=1, k=2)
bond = BondOperator(orb_A, orb_B)
pprint(bond.covalent())
print("\n=== Reaction Morphism Example ===")
reaction = ReactionMorphism(dn_shift=1, dbeta_shift=0.1)
orb_reacted = reaction.apply(orb_A)
pprint(orb_reacted.wavefunction())
print("\n=== Material Example ===")
material = Material([orb_A, orb_B, orb_reacted])
pprint(material.total_wavefunction())
pprint(material.total_bonding())
if __name__ == "__main__":
example_usage()