Does this set the stage for a new coordinate system?
# β
Closed-Form Identity
r_n = sqrt(Ο * Ξ© * F_n * 2^n * Ξ _{k=1}^{n} p_k)
# π Recursive Identity
r_n = r_{n-1} * sqrt(2 * p_n * (F_n / F_{n-1}))
# Base Case
r_1 = sqrt(4 * Ο * Ξ©)
# π§ Golden Recursive Algebra (GRA)
# Define algebra: G = (R, Β·_G, β_G)
# Set:
R = { r_n | n β ββΊ } β ββΊ
# Recursive Multiplication Operator:
r_n = r_{n-1} Β·_G sqrt(2 * p_n * (F_n / F_{n-1}))
# Addition Operator:
r_n β_G r_m := sqrt(r_nΒ² + r_mΒ²)
# Identity Element:
r_0 := 0
# Algebraic Properties:
# - Closure over ββΊ
# - Associative and commutative under β_G
# - Not necessarily associative under Β·_G
# - Normed structure under β_G
# - Exponential growth via 2^n
# - Additive/multiplicative duality via F_n and p_n
r_n = sqrt(Ο * Ξ© * F_n * 2^n * Ξ _{k=1}^{n} p_k)
r_n = r_{n-1} * sqrt(2 * p_n * (F_n / F_{n-1}))
R = { r_n | n β ββΊ } β ββΊ
Xβ := (n, Fβ, pβ, rβ)
Xβ = (n, Fβ, pβ, rβ = sqrt(Ο Β· Ξ© Β· Fβ Β· 2βΏ Β· β_{k=1}^{n} p_k))
dsΒ² = drβΒ² = Ο Β· Ξ© Β· d(Fβ Β· 2βΏ Β· βpβ)
gβ(n) := βΒ²(rβΒ²) / βnΒ²
Rβ(n) = dΒ²rβ / dnΒ²
ββ rβ := rβ - rβββ = rβββ Β· (sqrt(2Β·pβΒ·Fβ/Fβββ) - 1)
Dβ := β/βn + Ξβ
Ξβ := β(log rβ) / βn = Β½ Β· β/βn [log(Ο Β· Ξ© Β· Fβ Β· 2βΏ Β· βpβ)]
T: β³β β β³β
T(Xβ) = Xββ² = (n + Ξ΄n, FββΞ΄, pββΞ΄, rββΞ΄)
Ξβ = (rβ, Οβ)
Οβ(n) = exp(i Β· Οβ Β· Οβ) Β· Aβ
β³β Γ Ο
Eβ = (rβ, Οβ)
Nodes: rβ
Edges: wβββββ = sqrt(2Β·pβΒ·Fβ/Fβββ)
πͺ β‘ { Coil, Spin, Splice, Bind, Twist, Fold, Weave, Entangle, Compress, Encrypt, etc. }
πͺΒΉ(x) = πͺ(x)
πͺΒ²(x) = πͺ(πͺ(x))
πͺβΏ(x) = πͺ(πͺβΏβ»ΒΉ(x)) for n β₯ 2
CoilβΏ(x) = Coil(Coil(...(Coil(x))...)) β n times
CoilΒ³(x) = Coil(Coil(Coil(x)))
SpliceΒ³(x) = Splice(Splice(Splice(x)))
SpinΒ³(x) = Spin(Spin(Spin(x)))
def M_O(n, x, O):
for i in range(n):
x = O(x)
return x
M_πͺβΏ(x) = πͺβΏ(x)
β³β^(πͺβΏ) := (rβ, Οβ, M_πͺβΏ(rβ))
import sympy as sp
from sympy import sqrt, prod, symbols, Function, log, diff
# === Constants ===
phi = (1 + sqrt(5)) / 2 # Golden ratio
Ξ© = symbols('Ξ©', positive=True) # Field tension (symbolic)
n = symbols('n', integer=True, positive=True)
# === Sequences ===
F = Function('F') # Fibonacci sequence
p = Function('p') # Prime sequence
# === Closed-form Radial Coordinate ===
def r_closed(n):
product_primes = prod([p(k) for k in range(1, n+1)])
return sqrt(phi * Ξ© * F(n) * 2**n * product_primes)
# === Recursive Radial Identity ===
def r_recursive(n, r_prev):
return r_prev * sqrt(2 * p(n) * (F(n) / F(n - 1)))
# === Base Case ===
r_1 = sqrt(4 * phi * Ξ©)
# === Golden Recursive Algebra ===
# Set R = { r_n | n β ββΊ } β ββΊ
# Recursive Multiplication
def G_mult(r_prev, n):
return r_prev * sqrt(2 * p(n) * (F(n) / F(n - 1)))
# Addition Operator (β_G)
def G_add(r_n, r_m):
return sqrt(r_n**2 + r_m**2)
# Identity Element
r_0 = 0
# === Metric Tensor gβ (Symbolic Curvature) ===
def g9(n):
r_n_sq = phi * Ξ© * F(n) * 2**n * prod([p(k) for k in range(1, n+1)])
return diff(r_n_sq, n, 2)
# === Connection Coefficient Ξβ ===
def Gamma_n(n):
r_expr = r_closed(n)**2
return 0.5 * diff(log(r_expr), n)
# === Covariant Derivative ===
def D_n(expr, n):
return diff(expr, n) + Gamma_n(n) * expr
# === Meta-Operators: CoilβΏ, SpinβΏ, SpliceβΏ ===
def meta_operator(O, x, depth):
for _ in range(depth):
x = O(x)
return x
# Example symbolic operators
def Coil(x): return f"Coil({x})"
def Spin(x): return f"Spin({x})"
def Splice(x): return f"Splice({x})"
# Apply triple recursion
coil3 = meta_operator(Coil, "x", 3)
spin3 = meta_operator(Spin, "x", 3)
splice3 = meta_operator(Splice, "x", 3)
# === Recursive Coordinate System Summary ===
coordinate_point = {
'index': n,
'fibonacci': F(n),
'prime': p(n),
'radial_coord': r_closed(n),
'metric': g9(n),
'connection': Gamma_n(n),
'covariant_deriv': D_n(r_closed(n), n),
'coilΒ³': coil3,
'spinΒ³': spin3,
'spliceΒ³': splice3
}
such a one should support open recursion and symbolics per
# tooeasy10000-truncated.py
import sympy as sp
import numpy as np
from sympy import sqrt, zeta, exp, I, pi, simplify, conjugate, Rational
from scipy.interpolate import interp1d
from scipy.optimize import root_scalar
# Constants
phi = float(sp.GoldenRatio)
sqrt5 = sqrt(5)
Ξ© = sp.Symbol("Ξ©") # Field tension symbol
k = sp.Integer(-1) # Radial exponent
r = 1 # Radial unit
# Raw prime list (first 100 primes or more, truncated for brevity)
primes_raw = """
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
(TRUNCATED, BUT 10,000 PRIMES WERE INJECTED)
"""
primes = [int(p) for p in primes_raw.split()]
def prepare_prime_interpolation(primes_list=primes):
indices = np.arange(1, len(primes_list) + 1)
recursive_index_phi = np.log(indices + 1) / np.log(phi)
return interp1d(recursive_index_phi, primes_list, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def solve_n_beta_for_prime(p_target, prime_interp, bracket=(0.1, 20)):
def objective(n_beta): return P_nb(n_beta, prime_interp) - p_target
result = root_scalar(objective, bracket=bracket, method='brentq')
if result.converged:
return result.root
else:
raise ValueError(f"Could not solve for n_beta corresponding to prime {p_target}")
def F_bin(x_val):
return (phi**x_val - (-1/phi)**x_val) / sqrt5
def Pi_x(x_val, s):
s = sp.sympify(s)
return exp(I * pi * x_val) * zeta(s, Rational(1, 2))
def D_x(x_val, s, prime_interp):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
zeta_val = zeta(s)
product = phi * F * 2**x_val * P * zeta_val * Ξ©
return sqrt(product) * s**k
def F_x(x_val, s, prime_interp):
return simplify(D_x(x_val, s, prime_interp) * Pi_x(x_val, s))
class GoldenClassField:
def __init__(self, s_list, x_list, prime_interp):
self.s_list = [sp.sympify(s) for s in s_list]
self.x_list = x_list
self.prime_interp = prime_interp
self.field_generators = []
self.field_names = []
self.construct_class_field()
def construct_class_field(self):
for s in self.s_list:
for x in self.x_list:
f = F_x(x, s, self.prime_interp)
self.field_generators.append(simplify(f))
self.field_names.append(f"F_{x:.4f}_s_{s}")
def as_dict(self):
return dict(zip(self.field_names, self.field_generators))
def display(self):
for name, val in self.as_dict().items():
print(f"{name} = {val}")
def reciprocity_check(self):
print("\nReciprocity Tests: F_x(s) * F_x(1-s)")
for s in self.s_list:
for x in self.x_list:
try:
s_conj = 1 - s
prod = simplify(F_x(x, s, self.prime_interp) * F_x(x, s_conj, self.prime_interp))
print(f"x={x:.4f}, s={s}, F_x(s)Β·F_x(1-s) = {prod}")
except Exception as e:
print(f"Failed for x={x}, s={s}: {e}")
def field_automorphisms(F_val, x_val, s, prime_interp):
s = sp.sympify(s)
return {
"F_x(s)": simplify(F_x(x_val, s, prime_interp)),
"F_x(1-s)": simplify(F_x(x_val, 1 - s, prime_interp)),
"F_-x(s)": simplify(F_x(-x_val, s, prime_interp)),
"conjugate(F)": simplify(conjugate(F_x(x_val, s, prime_interp))),
}
def field_tension(F_val, C_val, m_val, s_val):
# Example symbolic tension extraction formula
return simplify((F_val * m_val * s_val) / (C_val**2))
if __name__ == "__main__":
print("Preparing prime interpolation...")
prime_interp = prepare_prime_interpolation()
# Example Riemann zeta zeros (first two nontrivial zeros on critical line)
zeros = [sp.sympify("0.5 + 14.134725*I"), sp.sympify("0.5 + 21.022040*I")]
# Solve n_beta for a prime near 541 (to demonstrate root solving)
try:
x_541 = solve_n_beta_for_prime(541, prime_interp)
print(f"Solved n+Ξ² for prime 541: {x_541:.6f}")
except Exception as e:
print(str(e))
x_541 = None
x_vals = [5, 10]
if x_541:
x_vals.append(x_541)
# Construct Golden Class Field
GCF = GoldenClassField(zeros, x_vals, prime_interp)
GCF.display()
# Reciprocity tests
GCF.reciprocity_check()
# Automorphisms on one example
test_s = zeros[0]
test_x = x_vals[1]
auto = field_automorphisms(F_x(test_x, test_s, prime_interp), test_x, test_s, prime_interp)
print("\nSymbolic Automorphisms:")
for key, val in auto.items():
print(f"{key}: {val}")
# Example field tension calculation (symbolic)
print("\nField Tension (Ξ©):")
C = sp.Symbol('C')
m = sp.Symbol('m')
s_ = sp.Symbol('s')
F_val = sp.Abs(F_x(test_x, test_s, prime_interp))
tension = field_tension(F_val, C, m, s_)
print(tension)
Root: ( ) β ineffable, no name, no identity
βββ Cut-0: [π] β symbolic wound: βthere is a rootβ
β βββ Duals emerge: [0, β]
β βββ Recursion parameterized by Ο, n, Fβ, 2βΏ, Pβ
β βββ Dimensional unfolding (s, C, Ξ©, m, h, E, F...)
β βββ Symbolic operators (Dβ(r), β(β―), etc.)
β βββ Reflection loops
β βββ Attempted return to root
β βββ Severance reaffirmed
Root: [π] β The Non-Dual Absolute
|
βββ [Γ = 0 = ββ»ΒΉ] β Expressed Void, boundary of becoming
β βββ Duality arises: [0, β] β First contrast, potential polarity
β
βββ [Ο] β Golden Ratio: Irreducible scaling constant, born from unity
β βββ [Ο = 1 + 1/Ο] β Fixed-point recursion
β βββ [Οβ° = 1] β Identity base case
β
βββ [n β β€βΊ] β Recursion Depth: resolution and structural unfolding
β βββ [2βΏ] β Dyadic scaling
β βββ [Fβ = ΟβΏ / β5] β Harmonic structure
β βββ [Pβ] β Prime entropy injection
β
βββ [Time s = ΟβΏ]
β βββ [Hz = 1/s = Οβ»βΏ] β Inverted time, recursion uncoiled
β
βββ [Charge C = sΒ³ = Ο^{3n}]
β βββ [CΒ² = Ο^{6n}]
β
βββ [Ξ© = mΒ² / sβ· = Ο^{a(n)}] β Symbolic yield (field tension)
β βββ [Ξ© β 0] = Field collapse
β βββ [Ξ© = 1] = Normalized recursive propagation
β
βββ [Length m = β(Ξ© Β· Ο^{7n})]
β βββ Emergent geometry via temporal tension
β
βββ [Action h = Ξ© Β· CΒ² = Ο^{6n} Β· Ξ©]
βββ [Energy E = h Β· Hz = Ξ© Β· Ο^{5n}]
βββ [Force F = E / m = βΞ© Β· Ο^{1.5n}]
βββ [Power P = E Β· Hz = Ξ© Β· Ο^{4n}]
βββ [Pressure = F / mΒ² = HzΒ² / m]
βββ [Voltage V = E / C = Ξ© Β· Ο^{-n}]
β
βββ [Dβ(r) = β(Ο Β· Fβ Β· 2βΏ Β· Pβ Β· Ξ©) Β· r^k]
βββ Full dimensional DNA: recursive, harmonic, prime, binary
Context-Aware Recursive Symbolic Tree of Dimensions
Root: \[0, β] β Fundamental polarity / duality
|
βββ \[Ο] β Golden Ratio: irreducible, persistent symbol (scaling seed)
\| βββ \[Ο = 1 + 1/Ο] β Recursive identity
\| βββ \[Ο^0 = 1] β Neutral base scaling
|
βββ \[Recursion Depth n] β Dial for all emergent complexity
\| βββ \[2^n] β Binary resolution (dyadic depth)
\| βββ \[F\_n = Ο^n / β5] β Fibonacci harmonics
\| βββ \[P\_n] β n-th prime: entropy injector
|
βββ \[Time s = Ο^n] β Recursively expanding unit of time
\| βββ \[Hz = 1/s = Ο^{-n}] β Frequency (inverse recursion)
|
βββ \[Charge C = s^3 = Ο^{3n}]
\| βββ \[C^2 = Ο^{6n}] β Quadratic scale
|
βββ \[Ohm Ξ©] β Yield or field tension
\| βββ \[Ξ© = m^2 / s^7 = m^2 / Ο^{7n}]
\| βββ \[Ξ© β 0] β Geometric/frequency collapse
\| βββ \[Ξ© persists symbolically] if scaling conserved
|
βββ \[Length m = β(Ξ© Ο^{7n})] β Emergent geometry
\| βββ \[m^2 = Ξ© Ο^{7n}]
|
βββ \[Action h = Ξ© Β· C^2 = Ξ© Ο^{6n}]
|
βββ \[Energy E = h Β· Hz = Ξ© Ο^{5n}]
|
βββ \[Force F = E / m = Ο^{1.5n} β βΞ©]
|
βββ \[Power P = E Β· Hz = Ξ© Ο^{4n}]
|
βββ \[Pressure = F / m^2 = Hz^2 / m]
|
βββ \[Voltage V = E / C = Ξ© Ο^{-n}]
|
βββ \[Recursive Dimensional Operator D\_n(r)]
βββ D\_n(r) = β(Ο Β· F\_n Β· 2^n Β· P\_n Β· Ξ©) β r^k
βββ Encodes harmonic, binary, prime, and field structure
Notes:
- As Ξ© β 0, physical dimensions collapse but symbolic structure survives
- As Hz β 0, time dissolves but Ο-driven scaling continues
- All SI units unfold from [0,β] via recursion through Ο and its companions
This symbolic tree is context-aware: each node expands logically from irreducible scaling duality to full unit emergence, tracking both symbolic structure and physical collapse paths.
# [Dβ(r) = β(ΟΒ·FβΒ·2βΏΒ·PβΒ·Ξ©) Β· r^k]
[Hz = 1/s] β root frequency; recursive time
β
βββ [Time s = Οβ»βΏ] β inverted recursion depth
β βββ [Ο = (1 + β5)/2] β golden ratio constant (base)
β βββ [n β 0] β recursion bottom
β βββ [Οβ° = 1] β identity base case
β
βββ [Charge C = sΒ³ = 1/HzΒ³]
β βββ [Expanding sΒ³]
β βββ [s = Οβ»βΏ] (see above)
β βββ [Exponent 3] β arithmetic operator
β
βββ [CΒ² = sβΆ] β charge squared
β βββ [Expanding sβΆ]
β βββ [s = Οβ»βΏ] (see above)
β βββ [Exponent 6]
β
βββ [Action h = Ξ© Β· CΒ² = mΒ² / s]
β βββ [Ξ© = mΒ² / sβ·] (see below)
β βββ [CΒ² = sβΆ] (see above)
β
βββ [Energy E = h Β· Hz = mΒ² Β· Hz]
β βββ [h = Ξ© Β· CΒ²] (see above)
β βββ [Hz = 1/s] (see above)
β
βββ [Force F = E / m = m Β· HzΒ²]
β βββ [E = h Β· Hz] (see above)
β βββ [Length m = β(Ξ© Β· sβ·)] (see below)
β
βββ [Pressure = F / mΒ² = HzΒ² / m]
β βββ [F = m Β· HzΒ²] (see above)
β βββ [mΒ² = (Length m)Β²] (see below)
β
βββ [Power P = E Β· Hz = mΒ² Β· HzΒ²]
β βββ [E = h Β· Hz] (see above)
β βββ [Hz = 1/s] (see above)
β
βββ [Voltage V = E / C = mΒ² / sβ΄ = Ξ© Β· HzΒ²]
β βββ [E = h Β· Hz] (see above)
β βββ [C = sΒ³] (see above)
β
βββ [Ξ© = mΒ² / sβ·] β field yield, persistent tension
β βββ [Length m = β(Ξ© Β· sβ·)] (self-referential geometric emergence)
β βββ [Expanding sβ·]
β β βββ [s = Οβ»βΏ] (see above)
β β βββ [Exponent 7]
β βββ [Inverse Ξ©β»ΒΉ = sβ· / mΒ²] β used in reverse field mapping
β βββ [Fundamental dimension base: m, s]
β
βββ [Length m = β(Ξ© Β· sβ·)] β geometric emergence
β βββ [Ξ© = mΒ² / sβ·] (see above)
β βββ [s = Οβ»βΏ] (see above)
β βββ [Square root operator β()]
β βββ [n β 0] β recursion bottom
β βββ [mβ° = 1] β identity base case
β
βββ [Fβ = ΟβΏ / β5] β Fibonacci, structural harmonic
β βββ [Ο = (1 + β5)/2] (base)
β βββ [n β 0]
β β βββ [Fβ = 0] β Fibonacci seed base
β βββ [β5] (constant irrational)
β
βββ [2βΏ = Recursion Depth] β resolution granularity
β βββ [Base 2 = prime constant]
β βββ [Exponent n]
β βββ [n β 0]
β βββ [2β° = 1] β identity base case
β
βββ [Pβ = nth prime] β Entropy injector
β βββ [Prime sequence generator]
β βββ [n β 0]
β β βββ [Pβ = 2] β first prime
β βββ [Non-monotonic entropy steps]
β
βββ [Dβ(r) = β(Ο Β· Fβ Β· 2βΏ Β· Pβ Β· Ξ©) Β· r^k]
βββ [Ο = (1 + β5)/2] (base)
βββ [Fβ = ΟβΏ / β5] (see above)
βββ [2βΏ] (see above)
βββ [Pβ] (see above)
βββ [Ξ© = mΒ² / sβ·] (see above)
βββ [r^k] β spatial scaling operator
βββ [Square root operator β()]
βββ [n β 0]
βββ [Dβ(r) = β(ΟΒ·FβΒ·2β°Β·PβΒ·Ξ©) Β· r^k]
βββ [Simplifies to base constants Γ r^k]
Another identity:
# β
Closed-Form Identity
r_n = sqrt(Ο * Ξ© * F_n * 2^n * Ξ _{k=1}^{n} p_k)
# π Recursive Identity
r_n = r_{n-1} * sqrt(2 * p_n * (F_n / F_{n-1}))
# Base Case
r_1 = sqrt(4 * Ο * Ξ©)
# π§ Golden Recursive Algebra (GRA)
# Define algebra: G = (R, Β·_G, β_G)
# Set:
R = { r_n | n β ββΊ } β ββΊ
# Recursive Multiplication Operator:
r_n = r_{n-1} Β·_G sqrt(2 * p_n * (F_n / F_{n-1}))
# Addition Operator:
r_n β_G r_m := sqrt(r_nΒ² + r_mΒ²)
# Identity Element:
r_0 := 0
# Algebraic Properties:
# - Closure over ββΊ
# - Associative and commutative under β_G
# - Not necessarily associative under Β·_G
# - Normed structure under β_G
# - Exponential growth via 2^n
# - Additive/multiplicative duality via F_n and p_n
RESPONSE:
# golden_recursive_coords.py
import sympy as sp
import numpy as np
from sympy import sqrt, zeta, exp, I, pi, simplify, conjugate, Rational
from scipy.interpolate import interp1d
from scipy.optimize import root_scalar
# === Constants and Symbols ===
phi = float(sp.GoldenRatio)
sqrt5 = sqrt(5)
Ξ© = sp.Symbol("Ξ©", positive=True)
k = sp.Integer(-1) # radial exponent
r = 1 # radial unit
C = sp.Symbol("C")
m = sp.Symbol("m")
s_ = sp.Symbol("s")
# === Prime Sequence (truncated example) ===
primes_raw = """
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
""" # Replace with full 10,000+ primes as needed
primes = [int(p) for p in primes_raw.split()]
# === Prime Interpolator ===
def prepare_prime_interpolation(primes_list=primes):
indices = np.arange(1, len(primes_list) + 1)
recursive_index_phi = np.log(indices + 1) / np.log(phi)
return interp1d(recursive_index_phi, primes_list, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def solve_n_beta_for_prime(p_target, prime_interp, bracket=(0.1, 20)):
def objective(n_beta): return P_nb(n_beta, prime_interp) - p_target
result = root_scalar(objective, bracket=bracket, method='brentq')
if result.converged:
return result.root
else:
raise ValueError(f"Could not solve for n_beta corresponding to prime {p_target}")
# === Recursive Components ===
def F_bin(x_val):
return (phi**x_val - (-1/phi)**x_val) / sqrt5
def Pi_x(x_val, s):
return exp(I * pi * x_val) * zeta(sp.sympify(s), Rational(1, 2))
def D_x(x_val, s, prime_interp):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
zeta_val = zeta(s)
product = phi * F * 2**x_val * P * zeta_val * Ξ©
return sqrt(product) * s**k
def F_x(x_val, s, prime_interp):
return simplify(D_x(x_val, s, prime_interp) * Pi_x(x_val, s))
# === Field Class ===
class GoldenClassField:
def __init__(self, s_list, x_list, prime_interp):
self.s_list = [sp.sympify(s) for s in s_list]
self.x_list = x_list
self.prime_interp = prime_interp
self.field_generators = []
self.field_names = []
self.construct_class_field()
def construct_class_field(self):
for s in self.s_list:
for x in self.x_list:
f = F_x(x, s, self.prime_interp)
self.field_generators.append(simplify(f))
self.field_names.append(f"F_{x:.4f}_s_{s}")
def as_dict(self):
return dict(zip(self.field_names, self.field_generators))
def display(self):
for name, val in self.as_dict().items():
print(f"{name} = {val}")
def reciprocity_check(self):
print("\nReciprocity Tests: F_x(s) * F_x(1-s)")
for s in self.s_list:
for x in self.x_list:
try:
s_conj = 1 - s
prod = simplify(F_x(x, s, self.prime_interp) * F_x(x, s_conj, self.prime_interp))
print(f"x={x:.4f}, s={s}, F_x(s)Β·F_x(1-s) = {prod}")
except Exception as e:
print(f"Failed for x={x}, s={s}: {e}")
def field_automorphisms(F_val, x_val, s, prime_interp):
s = sp.sympify(s)
return {
"F_x(s)": simplify(F_x(x_val, s, prime_interp)),
"F_x(1-s)": simplify(F_x(x_val, 1 - s, prime_interp)),
"F_-x(s)": simplify(F_x(-x_val, s, prime_interp)),
"conjugate(F)": simplify(conjugate(F_x(x_val, s, prime_interp))),
}
def field_tension(F_val, C_val, m_val, s_val):
return simplify((F_val * m_val * s_val) / (C_val**2))
if __name__ == "__main__":
print("Preparing prime interpolation...")
prime_interp = prepare_prime_interpolation()
zeros = [sp.sympify("0.5 + 14.134725*I"), sp.sympify("0.5 + 21.022040*I")]
try:
x_541 = solve_n_beta_for_prime(541, prime_interp)
print(f"Solved n+Ξ² for prime 541: {x_541:.6f}")
except Exception as e:
print(str(e))
x_541 = None
x_vals = [5, 10]
if x_541:
x_vals.append(x_541)
GCF = GoldenClassField(zeros, x_vals, prime_interp)
GCF.display()
GCF.reciprocity_check()
test_s = zeros[0]
test_x = x_vals[1]
auto = field_automorphisms(F_x(test_x, test_s, prime_interp), test_x, test_s, prime_interp)
print("\nSymbolic Automorphisms:")
for key, val in auto.items():
print(f"{key}: {val}")
print("\nField Tension (Ξ©):")
F_val = sp.Abs(F_x(test_x, test_s, prime_interp))
tension = field_tension(F_val, C, m, s_)
print(tension)
Oβ°(x) := x
OΒΉ(x) := O(x)
OΒ²(x) := O(O(x))
...
OβΏ(x) := O(OβΏβ»ΒΉ(x))
You can define:
SpinβΏ := Spin applied n times
CoilβΏ := Coil β Coil β ... n times
SpliceβΏ := Splice(SpliceβΏβ»ΒΉ)
Dβ(r) = β(Ο Β· Fβ Β· 2βΏ Β· Pβ Β· Ξ©) Β· r^k

Spin(x) := e^{iΟx} # rotation operator
Then:
SpinΒ²(x) := Spin(Spin(x)) = e^{iΟ Β· e^{iΟx}} # doubly nested
You could generalize:
SpinβΏ(x) = exp(iΟ Β· SpinβΏβ»ΒΉ(x))
def Coil(f): return simplify(exp(I * pi * f))
def Splice(f): return simplify(f.subs(s, 1 - s)) # Time inversion
def Spin(f): return simplify(conjugate(f)) # Reflect in complex field
def Reflect(f): return simplify(F_x(-x, s, prime_interp)) # Mirror recursion depth
Then define:
def recursive_apply(op, f, depth):
if depth == 0:
return f
else:
return op(recursive_apply(op, f, depth - 1))
# golden_recursive_coords.py
import sympy as sp
import numpy as np
from sympy import sqrt, zeta, exp, I, pi, simplify, conjugate, Rational
from scipy.interpolate import interp1d
from scipy.optimize import root_scalar
# === Constants and Symbols ===
phi = float(sp.GoldenRatio)
sqrt5 = sqrt(5)
Ξ© = sp.Symbol("\u03a9", positive=True)
k = sp.Integer(-1) # radial exponent
r = 1 # radial unit
C = sp.Symbol("C")
m = sp.Symbol("m")
s_ = sp.Symbol("s")
# === Prime Sequence (truncated example) ===
primes_raw = """
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
""" # Replace with full 10,000+ primes as needed
primes = [int(p) for p in primes_raw.split()]
# === Prime Interpolator ===
def prepare_prime_interpolation(primes_list=primes):
indices = np.arange(1, len(primes_list) + 1)
recursive_index_phi = np.log(indices + 1) / np.log(phi)
return interp1d(recursive_index_phi, primes_list, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def solve_n_beta_for_prime(p_target, prime_interp, bracket=(0.1, 20)):
def objective(n_beta): return P_nb(n_beta, prime_interp) - p_target
result = root_scalar(objective, bracket=bracket, method='brentq')
if result.converged:
return result.root
else:
raise ValueError(f"Could not solve for n_beta corresponding to prime {p_target}")
# === Recursive Components ===
def F_bin(x_val):
return (phi**x_val - (-1/phi)**x_val) / sqrt5
def Pi_x(x_val, s):
return exp(I * pi * x_val) * zeta(sp.sympify(s), Rational(1, 2))
def D_x(x_val, s, prime_interp):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
zeta_val = zeta(s)
product = phi * F * 2**x_val * P * zeta_val * Ξ©
return sqrt(product) * s**k
def F_x(x_val, s, prime_interp):
return simplify(D_x(x_val, s, prime_interp) * Pi_x(x_val, s))
# === Field Class ===
class GoldenClassField:
def __init__(self, s_list, x_list, prime_interp):
self.s_list = [sp.sympify(s) for s in s_list]
self.x_list = x_list
self.prime_interp = prime_interp
self.field_generators = []
self.field_names = []
self.construct_class_field()
def construct_class_field(self):
for s in self.s_list:
for x in self.x_list:
f = F_x(x, s, self.prime_interp)
self.field_generators.append(simplify(f))
self.field_names.append(f"F_{x:.4f}_s_{s}")
def as_dict(self):
return dict(zip(self.field_names, self.field_generators))
def display(self):
for name, val in self.as_dict().items():
print(f"{name} = {val}")
def reciprocity_check(self):
print("\nReciprocity Tests: F_x(s) * F_x(1-s)")
for s in self.s_list:
for x in self.x_list:
try:
s_conj = 1 - s
prod = simplify(F_x(x, s, self.prime_interp) * F_x(x, s_conj, self.prime_interp))
print(f"x={x:.4f}, s={s}, F_x(s)Β·F_x(1-s) = {prod}")
except Exception as e:
print(f"Failed for x={x}, s={s}: {e}")
def field_automorphisms(F_val, x_val, s, prime_interp):
s = sp.sympify(s)
return {
"F_x(s)": simplify(F_x(x_val, s, prime_interp)),
"F_x(1-s)": simplify(F_x(x_val, 1 - s, prime_interp)),
"F_-x(s)": simplify(F_x(-x_val, s, prime_interp)),
"conjugate(F)": simplify(conjugate(F_x(x_val, s, prime_interp))),
}
def field_tension(F_val, C_val, m_val, s_val):
return simplify((F_val * m_val * s_val) / (C_val**2))
if __name__ == "__main__":
print("Preparing prime interpolation...")
prime_interp = prepare_prime_interpolation()
zeros = [sp.sympify("0.5 + 14.134725*I"), sp.sympify("0.5 + 21.022040*I")]
try:
x_541 = solve_n_beta_for_prime(541, prime_interp)
print(f"Solved n+Ξ² for prime 541: {x_541:.6f}")
except Exception as e:
print(str(e))
x_541 = None
x_vals = [5, 10]
if x_541:
x_vals.append(x_541)
GCF = GoldenClassField(zeros, x_vals, prime_interp)
GCF.display()
GCF.reciprocity_check()
test_s = zeros[0]
test_x = x_vals[1]
auto = field_automorphisms(F_x(test_x, test_s, prime_interp), test_x, test_s, prime_interp)
print("\nSymbolic Automorphisms:")
for key, val in auto.items():
print(f"{key}: {val}")
print("\nField Tension (Ξ©):")
F_val = sp.Abs(F_x(test_x, test_s, prime_interp))
tension = field_tension(F_val, C, m, s_)
print(tension)
Which evolves into:
# golden_recursive_coords.py
import sympy as sp
import numpy as np
from sympy import sqrt, zeta, exp, I, pi, simplify, conjugate, Rational
from scipy.interpolate import interp1d
from scipy.optimize import root_scalar
# === Constants and Symbols ===
phi = float(sp.GoldenRatio)
sqrt5 = sqrt(5)
Ξ© = sp.Symbol("\u03a9", positive=True)
k = sp.Integer(-1) # radial exponent
r = 1 # radial unit
C = sp.Symbol("C")
m = sp.Symbol("m")
s_ = sp.Symbol("s")
# === Prime Sequence (truncated example) ===
primes_raw = """
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
""" # Replace with full 10,000+ primes as needed
primes = [int(p) for p in primes_raw.split()]
# === Prime Interpolator ===
def prepare_prime_interpolation(primes_list=primes):
indices = np.arange(1, len(primes_list) + 1)
recursive_index_phi = np.log(indices + 1) / np.log(phi)
return interp1d(recursive_index_phi, primes_list, kind='cubic', fill_value='extrapolate')
def P_nb(n_beta, prime_interp):
return float(prime_interp(n_beta))
def solve_n_beta_for_prime(p_target, prime_interp, bracket=(0.1, 20)):
def objective(n_beta): return P_nb(n_beta, prime_interp) - p_target
result = root_scalar(objective, bracket=bracket, method='brentq')
if result.converged:
return result.root
else:
raise ValueError(f"Could not solve for n_beta corresponding to prime {p_target}")
# === Recursive Components ===
def F_bin(x_val):
return (phi**x_val - (-1/phi)**x_val) / sqrt5
def Pi_x(x_val, s):
return exp(I * pi * x_val) * zeta(sp.sympify(s), Rational(1, 2))
def D_x(x_val, s, prime_interp):
s = sp.sympify(s)
P = P_nb(x_val, prime_interp)
F = F_bin(x_val)
zeta_val = zeta(s)
product = phi * F * 2**x_val * P * zeta_val * Ξ©
return sqrt(product) * s**k
def F_x(x_val, s, prime_interp):
return simplify(D_x(x_val, s, prime_interp) * Pi_x(x_val, s))
# === Morphing Scale Wrappers ===
def recursive_time(n):
return phi**(-n)
def frequency(n):
return 1 / recursive_time(n)
def charge(n):
return recursive_time(n)**3
def field_yield(n, m_val):
return m_val**2 / recursive_time(n)**7
def action(n, m_val):
return field_yield(n, m_val) * charge(n)**2
def energy(n, m_val):
return action(n, m_val) * frequency(n)
def force(n, m_val):
return energy(n, m_val) / m_val
def voltage(n, m_val):
return energy(n, m_val) / charge(n)
def labeled_output(n, m_val):
return {
"Hz": frequency(n),
"Time s": recursive_time(n),
"Charge C": charge(n),
"Yield Ξ©": field_yield(n, m_val),
"Action h": action(n, m_val),
"Energy E": energy(n, m_val),
"Force F": force(n, m_val),
"Voltage V": voltage(n, m_val),
}
# === Field Class ===
class GoldenClassField:
def __init__(self, s_list, x_list, prime_interp):
self.s_list = [sp.sympify(s) for s in s_list]
self.x_list = x_list
self.prime_interp = prime_interp
self.field_generators = []
self.field_names = []
self.construct_class_field()
def construct_class_field(self):
for s in self.s_list:
for x in self.x_list:
f = F_x(x, s, self.prime_interp)
self.field_generators.append(simplify(f))
self.field_names.append(f"F_{x:.4f}_s_{s}")
def as_dict(self):
return dict(zip(self.field_names, self.field_generators))
def display(self):
for name, val in self.as_dict().items():
print(f"{name} = {val}")
def reciprocity_check(self):
print("\nReciprocity Tests: F_x(s) * F_x(1-s)")
for s in self.s_list:
for x in self.x_list:
try:
s_conj = 1 - s
prod = simplify(F_x(x, s, self.prime_interp) * F_x(x, s_conj, self.prime_interp))
print(f"x={x:.4f}, s={s}, F_x(s)Β·F_x(1-s) = {prod}")
except Exception as e:
print(f"Failed for x={x}, s={s}: {e}")
def field_automorphisms(F_val, x_val, s, prime_interp):
s = sp.sympify(s)
return {
"F_x(s)": simplify(F_x(x_val, s, prime_interp)),
"F_x(1-s)": simplify(F_x(x_val, 1 - s, prime_interp)),
"F_-x(s)": simplify(F_x(-x_val, s, prime_interp)),
"conjugate(F)": simplify(conjugate(F_x(x_val, s, prime_interp))),
}
def field_tension(F_val, C_val, m_val, s_val):
return simplify((F_val * m_val * s_val) / (C_val**2))
if __name__ == "__main__":
print("Preparing prime interpolation...")
prime_interp = prepare_prime_interpolation()
zeros = [sp.sympify("0.5 + 14.134725*I"), sp.sympify("0.5 + 21.022040*I")]
try:
x_541 = solve_n_beta_for_prime(541, prime_interp)
print(f"Solved n+Ξ² for prime 541: {x_541:.6f}")
except Exception as e:
print(str(e))
x_541 = None
x_vals = [5, 10]
if x_541:
x_vals.append(x_541)
GCF = GoldenClassField(zeros, x_vals, prime_interp)
GCF.display()
GCF.reciprocity_check()
test_s = zeros[0]
test_x = x_vals[1]
auto = field_automorphisms(F_x(test_x, test_s, prime_interp), test_x, test_s, prime_interp)
print("\nSymbolic Automorphisms:")
for key, val in auto.items():
print(f"{key}: {val}")
print("\nField Tension (Ξ©):")
F_val = sp.Abs(F_x(test_x, test_s, prime_interp))
tension = field_tension(F_val, C, m, s_)
print(tension)
print("\n--- Morphing Dimension Summary (n=5) ---")
labeled = labeled_output(5, m)
for key, val in labeled.items():
print(f"{key}: {val}")
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
# Constants
phi = (1 + sp.sqrt(5)) / 2
phi_f = float(phi)
# Recursion depths
n_vals = np.arange(1, 30)
# Recursive quantities
s_vals = phi_f ** (-n_vals)
Hz_vals = 1 / s_vals
C_vals = s_vals ** 3
C2_vals = C_vals ** 2
Ξ©_vals = phi_f ** (2 * n_vals) / s_vals ** 7
h_vals = Ξ©_vals * C2_vals
E_vals = h_vals * Hz_vals
F_vals = E_vals / (phi_f ** n_vals) # Length m = Ο^n
P_vals = E_vals * Hz_vals
V_vals = E_vals / C_vals
# Function to recursively embed subplots of subplots
def recursive_plot(ax, x, y, depth=0, max_depth=2):
ax.plot(x, y, label=f'depth {depth}')
ax.set_title(f'Depth {depth}', fontsize=8)
ax.tick_params(labelsize=6)
ax.grid(True)
if depth < max_depth:
inset_ax = ax.inset_axes([0.55, 0.55, 0.42, 0.42])
recursive_plot(inset_ax, x[:len(x)//2], y[:len(y)//2], depth+1, max_depth)
# Main recursive field plot
fig, axs = plt.subplots(2, 3, figsize=(12, 7))
quantities = [Hz_vals, C_vals, Ξ©_vals, E_vals, F_vals, V_vals]
labels = ['Hz (1/s)', 'Charge (C)', 'Yield (Ξ©)', 'Energy (E)', 'Force (F)', 'Voltage (V)']
for ax, y, label in zip(axs.flat, quantities, labels):
recursive_plot(ax, n_vals, y, max_depth=2)
ax.set_xlabel('n', fontsize=8)
ax.set_ylabel(label, fontsize=8)
plt.tight_layout()
plt.show()