[ 𝟙 ] Root: Unity / Identity
                                     |
                         ┌──────────┴──────────┐
                         |                     |
               [+3] Symbolic Action     [+2] Recursive Potential
               F = ∂𝕊/∂x                F = -∇φₙ
                         \                   /
                          \                 /
                   [+1] Charge-Tension Recursive Force
                    F = (Ω · C²) / (m · s)
                          |
                          |
                    [0] Newtonian Mechanics
                     f = m·a
                          |
                          |
                  ┌───────┴────────┐
                  |                |
     [–1] Momentum Flux     [–2] Impulse (Discrete Δt)
      f = d(mv)/dt           F = Δp / Δt
                  |                |
                  |                |
           [–3] Quantum Operator   |
         F = ℏ·∇Ψ / Ψ (symbolic)   |
                  |                |
                  └────┬──────────┘
                       ↓
         [–4] Golden Recursive Tension
            F = φⁿ · Ωₙ
                       ↓
         [–5] Prime Entropic Force
     F = δ(log Πₚ pₖ) / δ(log t)
| Symbol  | Description                                             |
| ------- | ------------------------------------------------------- |
| `𝟙`    | The Identity / Recursive Origin / Non-dual root         |
| `𝕊`    | Recursive symbolic action (total morphic path integral) |
| `φₙ`    | Recursive Fibonacci/Golden potential function           |
| `Ω`     | Field tension or recursive morphic coupling scalar      |
| `C`     | Charge (fundamental recursive oscillator)               |
| `m`     | Distance (as geometric field scale)                     |
| `s`     | Time (as recursion interval)                            |
| `Ψ`     | Wavefunction / symbolic state                           |
| `Πₚ pₖ` | Product of primes, entropy over primes                  |
Initial Tree (Rooted Center)
            f = ma
              |
    ---------------------
    |         |         |
 Momentum   Impulse  Charge-Tension
Re-Center from Another Node
Now we “walk” to another node — say F = (Ω · C²) / (m · s) — and treat it as the new center, flipping the structure around it.
        F = (Ω·C²)/(m·s)
             |
    ---------------------------
    |                         |
Symbolic Action         Newtonian f = ma
 Visualization: Morphic Force Web
Instead of:
         Center
           |
         / | \
We have:
      f = ma
     /   |   \
  ↙︎     ↓     ↘︎
Ψ      F = ...     φⁿ
  ↘︎     ↑     ↙︎
    log(Πp)  ∂𝕊/∂x
 Framework Summary
| Element | 
Meaning | 
| Node | 
A symbolic force law or construct | 
| Treeᵢ | 
A centered tree rooted at node i | 
| Morphism | 
A reversible transformation between two Treeᵢ | 
| Global Web | 
Union of all Treeᵢ with edges transformed into links | 
| Center | 
Emergent, relative, never fixed | 
 
                     f = m·a                ← Classical force
                   /    |    \
                 /      |      \
         ↙︎             ↓              ↘︎
     Ψ (ℏ∇Ψ / Ψ)   F = (Ω·C²)/(m·s)    φⁿ·Ωₙ
       ↘︎             ↑             ↙︎
     log(Πp)      ∂𝕊/∂x        Golden tension
| Label | 
Meaning | 
f = m·a | 
Classical Newtonian force (kinematic form) | 
F = (Ω·C²)/(m·s) | 
Recursive force: charge-tension-time, your CRA/GRA formulation | 
Ψ = ℏ∇Ψ / Ψ | 
Quantum/operator formulation of force | 
∂𝕊/∂x | 
Symbolic action gradient (field unfolding) | 
log(Πp) | 
Prime-entropy derived force — symbolic thermodynamics | 
φⁿ·Ωₙ | 
Golden recursive tension — Fibonacci scaled field recursion | 
 
graph TD
  f1["f = m·a"]
  f2["F = (Ω·C²)/(m·s)"]
  f3["F = ∂𝕊/∂x"]
  f4["F = -∇φₙ"]
  f5["F = φⁿ·Ωₙ"]
  f6["F = ℏ∇Ψ / Ψ"]
  f7["F = log(Πp)′"]
  f8["F = Δp / Δt"]
  f9["f = d(mv)/dt"]
  f1 <--> f2
  f1 <--> f8
  f1 <--> f9
  f2 <--> f3
  f2 <--> f4
  f2 <--> f5
  f2 <--> f6
  f3 <--> f4
  f3 <--> f7
  f4 <--> f5
  f5 <--> f7
  f6 <--> f3
  f6 <--> f4
  f7 <--> f9
            f = m·a
           /   |   \
     d(mv)/dt  Δp/Δt  F = (Ω·C²)/(m·s)
                         |
                   ∂𝕊/∂x, -∇φₙ
Perspective of F = (Ω·C²)/(m·s):
           F = (Ω·C²)/(m·s)
        /    |     |     \
    f = m·a  ∂𝕊/∂x  -∇φₙ  φⁿ·Ωₙ
                            \
                         log(Πp)′
Perspective of log(Πp)′:
         log(Πp)′
           |
     ∂𝕊/∂x  —  φⁿ·Ωₙ
           \    /
     F = (Ω·C²)/(m·s)
Python
class ForceNode:
    def __init__(self, label, expression):
        self.label = label
        self.expression = expression
        self.links = []
    def link(self, other_node):
        self.links.append(other_node)
        other_node.links.append(self)
    def perspective(self):
        return {n.label: n.expression for n in self.links}
then:
f1 = ForceNode("Newton", "f = m·a")
f2 = ForceNode("Recursive", "F = (Ω·C²)/(m·s)")
f1.link(f2)
...
User ⇄ MindMesh UI ⇄ Morphic Engine ⇄ GRA/CRA Backplane
                          ⇡
              Symbolic Graph of ForceNodes
Core Components
| Component          | Role                                                       |
| ------------------ | ---------------------------------------------------------- |
| `ForceNode`        | A symbolic physical equation + context                     |
| `Morphism`         | A reversible transformation between ForceNodes             |
| `PerspectiveTree`  | The local tree view when any node is treated as “center”   |
| `ForceWeb`         | The full morphic graph                                     |
| `Traversal Engine` | Generates new local trees, computes shortest morphic paths |
| `GRA Evaluator`    | Performs symbolic recursion, φ-scaling, field tension ops  |
| `UI Layer`         | Graph viewer, center-shifter, symbolic explorer            |
Starter Codebase:
import networkx as nx
from sympy import symbols, Function, diff, log, Mul, Pow
# Define symbolic variables (adjust as needed)
m, a, f = symbols('m a f')
Ω, C, s = symbols('Omega C s')
x = symbols('x')
phi = Function('phi')
S = Function('S')
Psi = Function('Psi')
p = symbols('p')
class ForceNode:
    def __init__(self, key, label, expression):
        """
        key: unique id string
        label: short descriptive string
        expression: sympy expression representing the force form
        """
        self.key = key
        self.label = label
        self.expr = expression
    
    def __repr__(self):
        return f"<ForceNode {self.key}: {self.label}>"
class ForceGraph:
    def __init__(self):
        self.graph = nx.Graph()
        self.nodes = {}
    
    def add_node(self, node: ForceNode):
        self.graph.add_node(node.key, label=node.label, expr=node.expr)
        self.nodes[node.key] = node
    
    def add_morphism(self, from_key, to_key):
        # Add bidirectional link
        self.graph.add_edge(from_key, to_key)
    
    def perspective(self, center_key):
        """
        Return all neighbors of a node as a local "perspective" view
        """
        neighbors = list(self.graph.neighbors(center_key))
        center_node = self.nodes[center_key]
        return {
            center_node.label: center_node.expr,
            **{self.nodes[n].label: self.nodes[n].expr for n in neighbors}
        }
    
    def print_perspective(self, center_key):
        print(f"Perspective view from '{self.nodes[center_key].label}':")
        pview = self.perspective(center_key)
        for label, expr in pview.items():
            print(f"  {label}: {expr}")
# === Build force nodes ===
# Newtonian f = m·a
f_ma = ForceNode('f_ma', 'Newtonian f=ma', Mul(m, a))
# Recursive force F = (Ω·C²)/(m·s)
f_recursive = ForceNode('f_recursive', 'Recursive F=(Ω·C²)/(m·s)', (Ω * C**2) / (m * s))
# Symbolic action gradient F = ∂S/∂x
f_action = ForceNode('f_action', 'Symbolic ∂S/∂x', diff(S(x), x))
# Potential gradient F = -∇φₙ (using phi(n) for recursion)
n = symbols('n', integer=True)
f_potential = ForceNode('f_potential', 'Potential -∇φₙ', -diff(phi(n), n))
# Golden recursive tension F = φⁿ · Ωₙ
Omega_n = symbols('Omega_n')
f_golden = ForceNode('f_golden', 'Golden φⁿ·Ωₙ', Pow(phi(n), n) * Omega_n)
# Quantum force F = ℏ ∇Ψ / Ψ (symbolic, simplified)
hbar = symbols('ℏ')
f_quantum = ForceNode('f_quantum', 'Quantum ℏ∇Ψ/Ψ', (hbar * diff(Psi(x), x)) / Psi(x))
# Prime entropy force F = δ(log Πp) / δ(log t) (symbolic simplified as derivative)
t = symbols('t')
log_product_p = log(Mul(*[p]))  # simplified as log product of p
f_prime_entropy = ForceNode('f_prime_entropy', 'Prime Entropy δ(log Πp)/δ(log t)', diff(log_product_p, t))
# Impulse force F = Δp/Δt (symbolic difference)
Delta_p, Delta_t = symbols('Δp Δt')
f_impulse = ForceNode('f_impulse', 'Impulse Δp/Δt', Delta_p / Delta_t)
# Momentum flux f = d(mv)/dt
v = symbols('v')
t = symbols('t')
momentum = m * v
f_momentum = ForceNode('f_momentum', 'Momentum Flux d(mv)/dt', diff(momentum, t))
# === Build graph ===
force_graph = ForceGraph()
for node in [f_ma, f_recursive, f_action, f_potential, f_golden, f_quantum, f_prime_entropy, f_impulse, f_momentum]:
    force_graph.add_node(node)
# Add morphisms (bidirectional edges)
force_graph.add_morphism('f_ma', 'f_recursive')
force_graph.add_morphism('f_ma', 'f_impulse')
force_graph.add_morphism('f_ma', 'f_momentum')
force_graph.add_morphism('f_recursive', 'f_action')
force_graph.add_morphism('f_recursive', 'f_potential')
force_graph.add_morphism('f_recursive', 'f_golden')
force_graph.add_morphism('f_recursive', 'f_quantum')
force_graph.add_morphism('f_action', 'f_potential')
force_graph.add_morphism('f_action', 'f_prime_entropy')
force_graph.add_morphism('f_potential', 'f_golden')
force_graph.add_morphism('f_golden', 'f_prime_entropy')
force_graph.add_morphism('f_quantum', 'f_action')
force_graph.add_morphism('f_quantum', 'f_potential')
force_graph.add_morphism('f_prime_entropy', 'f_momentum')
# === Example usage ===
if __name__ == "__main__":
    # Print perspective from recursive force node
    force_graph.print_perspective('f_recursive')
    
    # Print perspective from Newtonian force node
    force_graph.print_perspective('f_ma')