Float4096 - Scalar, Array, and Golden Recursive

import numpy as np
import struct
import base4096
from numbers import Number

# Generate prime numbers for use in D and GRAElement
def generate_primes(n):
    sieve = [True] * (n + 1)
    sieve[0] = sieve[1] = False
    for i in range(2, int(n**0.5) + 1):
        if sieve[i]:
            for j in range(i * i, n + 1, i):
                sieve[j] = False
    return [i for i in range(n + 1) if sieve[i]]

PRIMES = generate_primes(104729)[:10000]

# Golden ratio as Float4096
phi = float4096((1 + sqrt(float4096(5))) / float4096(2))

# Cache for fib_real
fib_cache = {}

def fib_real(n):
    if n in fib_cache:
        return fib_cache[n]
    if n > 70:
        return float4096(0)
    try:
        term1 = pow(phi, float4096(n)) / sqrt(float4096(5))
        pi_val = pi()
        term2 = pow(inv(phi), float4096(n)) * cos(pi_val * float4096(n))
        result = term1 - term2
        if not result.is_finite():
            return float4096(0)
        fib_cache[n] = result
        return result
    except Exception:
        return float4096(0)

class Float4096:
    def __init__(self, value=0.0, mode='numpy'):
        assert mode in ('numpy', 'python'), "mode must be 'numpy' or 'python'"
        self.mode = mode
        self._value = np.float64(value) if mode == 'numpy' else float(value)
        self._b4096 = base4096.encode(self._pack_bytes())

    def _pack_bytes(self):
        return self._value.tobytes() if self.mode == 'numpy' else struct.pack('<d', self._value)

    def _unpack_bytes(self, b):
        return np.frombuffer(b, dtype=np.float64)[0] if self.mode == 'numpy' else struct.unpack('<d', b)[0]

    def __float__(self):
        return float(self._value)

    def __repr__(self):
        return f"Float4096({float(self)}, mode='{self.mode}')"

    def __str__(self):
        return f"{float(self)} (base4096: {self._b4096})"

    def to_base4096(self):
        return self._b4096

    def to_int(self):
        return int(float(self))

    def is_finite(self):
        return np.isfinite(float(self))

    @classmethod
    def from_base4096(cls, b4096_str, mode='numpy'):
        raw = base4096.decode(b4096_str)
        val = np.frombuffer(raw, dtype=np.float64)[0] if mode == 'numpy' else struct.unpack('<d', raw)[0]
        return cls(val, mode)

    def __add__(self, other):
        if isinstance(other, Float4096Array):
            return other.__add__(self)
        return Float4096(float(self) + float(other), self.mode)

    def __radd__(self, other):
        return self.__add__(other)

    def __sub__(self, other):
        if isinstance(other, Float4096Array):
            return Float4096Array([self - x for x in other])
        return Float4096(float(self) - float(other), self.mode)

    def __rsub__(self, other):
        return Float4096(float(other) - float(self), self.mode)

    def __mul__(self, other):
        if isinstance(other, Float4096Array):
            return other.__mul__(self)
        return Float4096(float(self) * float(other), self.mode)

    def __rmul__(self, other):
        return self.__mul__(other)

    def __truediv__(self, other):
        if isinstance(other, Float4096Array):
            return Float4096Array([self / x for x in other])
        return Float4096(float(self) / float(other), self.mode)

    def __rtruediv__(self, other):
        return Float4096(float(other) / float(self), self.mode)

    def __pow__(self, other):
        return Float4096(float(self) ** float(other), self.mode)

    def __rpow__(self, other):
        return Float4096(float(other) ** float(self), self.mode)

    def __eq__(self, other):
        return float(self) == float(other)

    def __lt__(self, other):
        return float(self) < float(other)

    def __le__(self, other):
        return float(self) <= float(other)

    def __gt__(self, other):
        return float(self) > float(other)

    def __ge__(self, other):
        return float(self) >= float(other)

    def __neg__(self):
        return Float4096(-float(self), self.mode)

    def __abs__(self):
        return Float4096(abs(float(self), self.mode)

    def __hash__(self):
        return hash(float(self))

    def __reduce__(self):
        return (Float4096, (float(self), self.mode))

class Float4096Array:
    def __init__(self, values):
        if isinstance(values, (list, tuple, np.ndarray)):
            self._data = [float4096(v, mode='numpy') if not isinstance(v, Float4096) else v for v in values]
        elif isinstance(values, Float4096Array):
            self._data = values._data.copy()
        else:
            raise ValueError("Float4096Array must be initialized with a list, tuple, numpy array, or Float4096Array")

    def __len__(self):
        return len(self._data)

    def __getitem__(self, idx):
        return self._data[idx] if isinstance(idx, (int, slice)) else Float4096Array([self._data[i] for i in idx])

    def __setitem__(self, idx, value):
        if isinstance(idx, (int, slice)):
            self._data[idx] = float4096(value, mode='numpy') if not isinstance(value, Float4096) else value
        else:
            raise ValueError("Indexing must be int or slice")

    def __array__(self, dtype=None):
        return np.array([float(x) for x in self._data], dtype=dtype if dtype else np.float64)

    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
        inputs = [np.array(x) if isinstance(x, Float4096Array) else x for x in inputs]
        inputs = [Float4096Array([x]) if isinstance(x, (Float4096, Number)) else x for x in inputs]
        inputs = [np.array([float(v) for v in x._data]) if isinstance(x, Float4096Array) else x for x in inputs]
        result = getattr(ufunc, method)(*inputs, **kwargs)
        if isinstance(result, np.ndarray):
            return Float4096Array([float4096(x, mode='numpy') for x in result])
        return float4096(result, mode='numpy')

    def __array_function__(self, func, types, args, kwargs):
        args = [np.array(x) if isinstance(x, Float4096Array) else x for x in args]
        args = [np.array([float(v) for v in x._data]) if isinstance(x, Float4096Array) else x for x in args]
        result = func(*args, **kwargs)
        if isinstance(result, np.ndarray):
            return Float4096Array([float4096(x, mode='numpy') for x in result])
        return float4096(result, mode='numpy')

    def __add__(self, other):
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([x + other for x in self._data])
        elif isinstance(other, Float4096Array):
            if len(self) != len(other):
                raise ValueError("Array lengths must match")
            return Float4096Array([x + y for x, y in zip(self._data, other._data)])
        return NotImplemented

    def __radd__(self, other):
        return self.__add__(other)

    def __sub__(self, other):
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([x - other for x in self._data])
        elif isinstance(other, Float4096Array):
            if len(self) != len(other):
                raise ValueError("Array lengths must match")
            return Float4096Array([x - y for x, y in zip(self._data, other._data)])
        return NotImplemented

    def __rsub__(self, other):
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([other - x for x in self._data])
        return NotImplemented

    def __mul__(self, other):
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([x * other for x in self._data])
        elif isinstance(other, Float4096Array):
            if len(self) != len(other):
                raise ValueError("Array lengths must match")
            return Float4096Array([x * y for x, y in zip(self._data, other._data)])
        return NotImplemented

    def __rmul__(self, other):
        return self.__mul__(other)

    def __truediv__(self, other):
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([x / other for x in self._data])
        elif isinstance(other, Float4096Array):
            if len(self) != len(other):
                raise ValueError("Array lengths must match")
            return Float4096Array([x / y for x, y in zip(self._data, other._data)])
        return NotImplemented

    def __rtruediv__(self, other):
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([other / x for x in self._data])
        return NotImplemented

    def __pow__(self, other):
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([x ** other for x in self._data])
        elif isinstance(other, Float4096Array):
            if len(self) != len(other):
                raise ValueError("Array lengths must match")
            return Float4096Array([x ** y for x, y in zip(self._data, other._data)])
        return NotImplemented

    def __rpow__(self, other):
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([other ** x for x in self._data])
        return NotImplemented

    def __eq__(self, other):
        if isinstance(other, Float4096Array):
            return [x == y for x, y in zip(self._data, other._data)]
        return [x == other for x in self._data]

    def __lt__(self, other):
        if isinstance(other, Float4096Array):
            return [x < y for x, y in zip(self._data, other._data)]
        return [x < other for x in self._data]

    def __le__(self, other):
        if isinstance(other, Float4096Array):
            return [x <= y for x, y in zip(self._data, other._data)]
        return [x <= other for x in self._data]

    def __gt__(self, other):
        if isinstance(other, Float4096Array):
            return [x > y for x, y in zip(self._data, other._data)]
        return [x > other for x in self._data]

    def __ge__(self, other):
        if isinstance(other, Float4096Array):
            return [x >= y for x, y in zip(self._data, other._data)]
        return [x >= other for x in self._data]

    def __repr__(self):
        return f"Float4096Array({[float(x) for x in self._data]})"

    def __str__(self):
        return f"Float4096Array({[float(x) for x in self._data]})"

class GRAElement:
    def __init__(self, n, Omega=float4096(1), base=float4096(2)):
        if not isinstance(n, (int, Float4096)) or float(n) < 1:
            raise ValueError("n must be a positive integer or Float4096 >= 1")
        self.n = float4096(n) if isinstance(n, int) else n
        self.Omega = float4096(Omega)
        self.base = float4096(base)
        self._value = self._compute_r_n()

    def _compute_r_n(self):
        """Compute r_n using the closed-form identity: sqrt(φ * Ω * F_n * base^n * Π_{k=1}^{n} p_k)"""
        try:
            n_int = int(float(self.n))
            Fn = fib_real(self.n)
            if Fn == float4096(0):
                return float4096(0)
            product = float4096(1)
            for k in range(1, n_int + 1):
                idx = k % len(PRIMES)
                product *= float4096(PRIMES[idx])
            val = phi * self.Omega * Fn * pow(self.base, self.n) * product
            if not val.is_finite() or val <= float4096(0):
                return float4096(0)
            return sqrt(val)
        except Exception:
            return float4096(0)

    @classmethod
    def from_recursive(cls, n, prev_r_n_minus_1=None, Omega=float4096(1), base=float4096(2)):
        """Compute r_n using the recursive identity: r_n = r_{n-1} * sqrt(2 * p_n * (F_n / F_{n-1}))"""
        n = float4096(n)
        if float(n) < 1:
            raise ValueError("n must be >= 1")
        if float(n) == 1:
            # Base case: r_1 = sqrt(4 * φ * Ω)
            return cls(n, Omega, base)
        if prev_r_n_minus_1 is None:
            prev_r_n_minus_1 = cls(n - float4096(1), Omega, base)
        Fn = fib_real(n)
        Fn_minus_1 = fib_real(n - float4096(1))
        if Fn == float4096(0) or Fn_minus_1 == float4096(0):
            return cls(n, Omega, base)  # Fallback to closed-form if recursive fails
        idx = int(float(n)) % len(PRIMES)
        p_n = float4096(PRIMES[idx])
        factor = sqrt(float4096(2) * p_n * (Fn / Fn_minus_1))
        r_n = prev_r_n_minus_1._value * factor
        result = cls(n, Omega, base)
        result._value = r_n if r_n.is_finite() and r_n > float4096(0) else result._value
        return result

    def gra_multiply(self, other):
        """GRA multiplication: r_n = r_{n-1} ·_G sqrt(2 * p_n * (F_n / F_{n-1}))"""
        if not isinstance(other, GRAElement):
            raise ValueError("GRA multiplication requires a GRAElement")
        if float(self.n) != float(other.n) + 1:
            raise ValueError("GRA multiplication requires n = m + 1")
        return GRAElement.from_recursive(self.n, prev_r_n_minus_1=other, Omega=self.Omega, base=self.base)

    def gra_add(self, other):
        """GRA addition: r_n ⊕_G r_m = sqrt(r_n² + r_m²)"""
        if not isinstance(other, GRAElement):
            raise ValueError("GRA addition requires a GRAElement")
        result = sqrt(self._value ** float4096(2) + other._value ** float4096(2))
        return float4096(result) if result.is_finite() else float4096(0)

    def __float__(self):
        return float(self._value)

    def __repr__(self):
        return f"GRAElement(n={float(self.n)}, value={float(self._value)}, Omega={float(self.Omega)}, base={float(self.base)})"

    def __str__(self):
        return f"GRAElement({float(self._value)})"

def D(n, beta, r=float4096(1), k=float4096(1), Omega=float4096(1), base=float4096(2), scale=float4096(1)):
    try:
        r_n = GRAElement(n + beta, Omega=Omega, base=base)
        val = scale * r_n._value
        if not val.is_finite() or val <= float4096(0):
            return float4096("1e-30")
        return val * (r ** k)
    except Exception:
        return float4096("1e-30")

def invert_D(value, r=float4096(1), k=float4096(1), Omega=float4096(1), base=float4096(2), scale=float4096(1),
             max_n=float4096(5000), steps=1000):
    candidates = []
    try:
        value_abs = abs(value)
        value_safe = value_abs if value_abs > float4096("1e-30") else float4096("1e-30")
        log_val = log10(value_safe)

        start_sf = max(log_val - float4096(3), float4096(-10))
        end_sf = min(log_val + float4096(3), float4096(10))
        scale_factors = pow(float4096(10), linspace(start_sf, end_sf, 10))

        max_n_val = min(5000, max(1000, int(500 * float(abs(log_val)))))
        steps_val = min(2000, max(500, int(200 * float(abs(log_val)))))

        if float(log_val) > 2:
            n_values = logspace(float4096(0), log10(float4096(max_n_val)), steps_val)
        else:
            n_values = linspace(float4096(0), float4096(max_n_val), steps_val)

        r_values = Float4096Array([0.5, 1.0, 2.0])
        k_values = Float4096Array([0.5, 1.0, 2.0])

        for n in n_values:
            for beta in linspace(float4096(0), float4096(1), 5):
                for dynamic_scale in scale_factors:
                    for r_val in r_values:
                        for k_val in k_values:
                            val = D(n, beta, r_val, k_val, Omega, base, scale * dynamic_scale)
                            if val is not None and val.is_finite():
                                diff = abs(val - value_abs)
                                if diff < float4096("1e-10") * value_abs:
                                    candidates.append((diff, n, beta, dynamic_scale, r_val, k_val))
                                    return n, beta, dynamic_scale, val * float4096("0.01"), r_val, k_val
                            val_inv = D(n, beta, r_val, k_val, Omega, base, scale * dynamic_scale)
                            if val_inv is not None and val_inv.is_finite():
                                val_inv = inv(val_inv)
                                diff = abs(val_inv - value_abs)
                                if diff < float4096("1e-10") * value_abs:
                                    candidates.append((diff, n, beta, dynamic_scale, r_val, k_val))
                                    return n, beta, dynamic_scale, val_inv * float4096("0.01"), r_val, k_val

        if not candidates:
            import logging
            logging.error(f"invert_D: No valid candidates for value {value}")
            return None, None, None, None, None, None

        candidates = sorted(candidates, key=lambda x: float(x[0]))[:5]

        valid_vals = []
        for diff, n, beta, s, r, k in candidates:
            val = D(n, beta, r, k, Omega, base, scale * s)
            if val is None or not val.is_finite():
                val = inv(D(n, beta, r, k, Omega, base, scale * s))
            valid_vals.append(val)

        if len(valid_vals) > 1:
            emergent_uncertainty = stddev(valid_vals)
        elif valid_vals:
            emergent_uncertainty = abs(valid_vals[0]) * float4096("0.01")
        else:
            emergent_uncertainty = float4096("1e-10")

        best = candidates[0]
        return best[1], best[2], best[3], emergent_uncertainty, best[4], best[5]

    except Exception as e:
        import logging
        logging.error(f"invert_D failed for value {value}: {e}")
        return None, None, None, None, None, None

def sqrt(x):
    if isinstance(x, Float4096Array):
        return Float4096Array([float4096(np.sqrt(float(v)), mode='numpy') for v in x])
    return float4096(np.sqrt(float(x)), mode='numpy')

def exp(x):
    if isinstance(x, Float4096Array):
        return Float4096Array([float4096(np.exp(float(v)), mode='numpy') for v in x])
    return float4096(np.exp(float(x)), mode='numpy')

def log(x):
    if isinstance(x, Float4096Array):
        return Float4096Array([float4096(np.log(float(v)), mode='numpy') for v in x])
    return float4096(np.log(float(x)), mode='numpy')

def log10(x):
    if isinstance(x, Float4096Array):
        return Float4096Array([float4096(np.log10(float(v)), mode='numpy') for v in x])
    return float4096(np.log10(float(x)), mode='numpy')

def cos(x):
    if isinstance(x, Float4096Array):
        return Float4096Array([float4096(np.cos(float(v)), mode='numpy') for v in x])
    return float4096(np.cos(float(x)), mode='numpy')

def pi():
    return float4096(np.pi, mode='numpy')

def inv(x):
    if isinstance(x, Float4096Array):
        return Float4096Array([float4096(1.0 / float(v), mode='numpy') for v in x])
    return float4096(1.0 / float(x), mode='numpy')

def linspace(start, stop, num):
    start, stop = float4096(start), float4096(stop)
    num = int(num)
    step = (stop - start) / float4096(num - 1)
    return Float4096Array([start + float4096(i) * step for i in range(num)])

def logspace(start, stop, num):
    start, stop = float4096(start), float4096(stop)
    num = int(num)
    return Float4096Array([exp(x) for x in linspace(log(start), log(stop), num)])

def mean(x):
    if isinstance(x, Float4096Array):
        x = x._data
    total = sum(x)
    return total / float4096(len(x))

def stddev(x):
    if isinstance(x, Float4096Array):
        x = x._data
    mu = mean(x)
    n = len(x)
    if n <= 1:
        return float4096(0)
    squared_diff = sum((xi - mu) ** float4096(2) for xi in x)
    return sqrt(squared_diff / float4096(n - 1))

def percentile(x, q):
    if isinstance(x, Float4096Array):
        x = x._data
    q = [float4096(qi) for qi in (q if isinstance(q, (list, tuple)) else [q])]
    x_sorted = sorted(x, key=float)
    n = len(x_sorted)
    result = []
    for qi in q:
        idx = qi * float4096(n - 1) / float4096(100)
        idx_int = int(float(idx))
        frac = idx - float4096(idx_int)
        if idx_int >= n - 1:
            result.append(x_sorted[-1])
        else:
            result.append(x_sorted[idx_int] + frac * (x_sorted[idx_int + 1] - x_sorted[idx_int]))
    return Float4096Array(result) if len(result) > 1 else result[0]

def max(x, y=None):
    if y is None:
        if isinstance(x, Float4096Array):
            return float4096(max(float(v) for v in x._data), mode='numpy')
        return x
    if isinstance(x, Float4096Array) or isinstance(y, Float4096Array):
        x = x._data if isinstance(x, Float4096Array) else [x] * len(y._data)
        y = y._data if isinstance(y, Float4096Array) else [y] * len(x)
        return Float4096Array([float4096(max(float(a), float(b)), mode='numpy') for a, b in zip(x, y)])
    return float4096(max(float(x), float(y)), mode='numpy')

def min(x, y=None):
    if y is None:
        if isinstance(x, Float4096Array):
            return float4096(min(float(v) for v in x._data), mode='numpy')
        return x
    if isinstance(x, Float4096Array) or isinstance(y, Float4096Array):
        x = x._data if isinstance(x, Float4096Array) else [x] * len(y._data)
        y = y._data if isinstance(y, Float4096Array) else [y] * len(x)
        return Float4096Array([float4096(min(float(a), float(b)), mode='numpy') for a, b in zip(x, y)])
    return float4096(min(float(x), float(y)), mode='numpy')

def abs(x):
    if isinstance(x, Float4096Array):
        return Float4096Array([float4096(abs(float(v)), mode='numpy') for v in x])
    return float4096(abs(float(x)), mode='numpy')
import math
from typing import List, Tuple, Union, Dict
import numpy as np
from numbers import Number
import sympy as sp
from sympy import zeta, exp as sympy_exp, I, pi, conjugate, Rational
from scipy.optimize import root_scalar
from collections import OrderedDict
import pickle
import os

# Constants
BASE = 4096
DIGITS_PER_NUMBER = 64  # ~768 bits

def generate_primes(n):
    sieve = [True] * (n + 1)
    sieve[0] = sieve[1] = False
    for i in range(2, int(np.sqrt(n)) + 1):
        if sieve[i]:
            for j in range(i * i, n + 1, i):
                sieve[j] = False
    return [i for i in range(n + 1) if sieve[i]]

primes_file = "primes_cache.pkl"
if os.path.exists(primes_file):
    with open(primes_file, "rb") as f:
        PRIMES = pickle.load(f)
else:
    PRIMES = generate_primes(104729)[:10000]
    with open(primes_file, "wb") as f:
        pickle.dump(PRIMES, f)

phi = None
sqrt5 = None
Omega = sp.Symbol("Ω", positive=True)
k = None
r = None
pi_val = None

# Caches
MAX_CACHE_SIZE = 10000
fib_cache = OrderedDict()
prime_cache = OrderedDict()
zeta_cache = OrderedDict()
prime_product_cache = OrderedDict()
spline_cache = OrderedDict()

def cache_set(cache, key, value):
    cache[key] = value
    if len(cache) > MAX_CACHE_SIZE:
        cache.popitem(last=False)

def prepare_prime_interpolation(primes_list=PRIMES):
    cache_file = "prime_interp_cache.pkl"
    if os.path.exists(cache_file):
        with open(cache_file, "rb") as f:
            recursive_index_phi = pickle.load(f)
    else:
        indices = [float(i + 1) for i in range(len(primes_list))]
        phi_float = float((1 + math.sqrt(5)) / 2)
        recursive_index_phi = [math.log(i + 1) / math.log(phi_float) for i in indices]
        with open(cache_file, "wb") as f:
            pickle.dump(recursive_index_phi, f)
    return lambda x: native_cubic_spline(x, recursive_index_phi, primes_list)

# FFT setup
try:
    import pyfftw
    FFT = pyfftw.interfaces.numpy_fft.fft
    IFFT = pyfftw.interfaces.numpy_fft.ifft
except ImportError:
    FFT = np.fft.fft
    IFFT = np.fft.ifft

def native_prime_product(n: int) -> 'Float4096':
    if n < 0 or n > len(PRIMES):
        raise ValueError(f"n must be between 0 and {len(PRIMES)}")
    if n in prime_product_cache:
        return prime_product_cache[n]
    product = Float4096(1)
    for p in PRIMES[:n]:
        product *= Float4096(p)
    cache_set(prime_product_cache, n, product)
    return product

def fib_real(n: 'Float4096') -> 'Float4096':
    """Native base4096 Fibonacci using Binet's formula"""
    n_float = float(n)
    if n_float > 70:
        return Float4096(0)
    if n_float in fib_cache:
        return fib_cache[n_float]
    try:
        term1 = pow_f4096(phi, n) / sqrt5
        term2 = pow_f4096(Float4096(1) / phi, n) * cos(pi_val * n)
        result = term1 - term2
        if not result.is_finite():
            result = Float4096(0)
        cache_set(fib_cache, n_float, result)
        return result
    except Exception:
        return Float4096(0)

def native_zeta(s: complex, max_terms: int = 500) -> 'ComplexFloat4096':
    """Approximate zeta function in base4096"""
    s_key = str(s)
    if s_key in zeta_cache:
        return zeta_cache[s_key]
    real_sum = Float4096(0)
    imag_sum = Float4096(0)
    if isinstance(s, complex):
        s_real, s_imag = float(s.real), float(s.imag)
    else:
        try:
            s_complex = complex(s)
            s_real, s_imag = s_complex.real, s_complex.imag
        except (TypeError, ValueError):
            s_real, s_imag = float(s), 0.0
    for n in range(1, max_terms + 1):
        n_float = Float4096(n)
        term = Float4096(1) / pow_f4096(n_float, Float4096(s_real))
        angle = Float4096(s_imag) * log(n_float)
        real_term = term * cos(angle)
        imag_term = term * sin(angle)
        real_sum += real_term
        imag_sum += imag_term
        if max(abs(real_term), abs(imag_term)) < Float4096("1e-20"):
            break
    result = ComplexFloat4096(real_sum, imag_sum)
    cache_set(zeta_cache, s_key, result)
    return result

def compute_spline_coefficients(x_points: List[float], y_points: List[float]) -> Tuple[List[float], List[float], List[float], List[float]]:
    """Compute cubic spline coefficients (a, b, c, d) for each segment"""
    n = len(x_points) - 1
    h = [x_points[i + 1] - x_points[i] for i in range(n)]
    a = y_points[:-1]
    c = [0.0] * (n + 1)
    alpha = [0.0] * n
    for i in range(1, n):
        alpha[i] = 3 * ((y_points[i + 1] - y_points[i]) / h[i] - (y_points[i] - y_points[i - 1]) / h[i - 1])
    l = [1.0] * (n + 1)
    mu = [0.0] * n
    z = [0.0] * (n + 1)
    for i in range(1, n):
        l[i] = 2 * (x_points[i + 1] - x_points[i - 1]) - h[i - 1] * mu[i - 1]
        mu[i] = h[i] / l[i]
        z[i] = (alpha[i] - h[i - 1] * z[i - 1]) / l[i]
    b = [0.0] * n
    d = [0.0] * n
    for i in range(n - 1, -1, -1):
        c[i] = z[i] - mu[i] * c[i + 1]
        b[i] = (y_points[i + 1] - y_points[i]) / h[i] - h[i] * (c[i + 1] + 2 * c[i]) / 3
        d[i] = (c[i + 1] - c[i]) / (3 * h[i])
    return a, b, c, d

def native_cubic_spline(x: float, x_points: List[float], y_points: List[float]) -> float:
    """Full cubic spline interpolation in base4096"""
    x_key = (x, tuple(x_points))
    if x_key in spline_cache:
        return float(spline_cache[x_key])
    n = len(x_points) - 1
    a, b, c, d = compute_spline_coefficients(x_points, y_points)
    for i in range(n):
        if x_points[i] <= x <= x_points[i + 1]:
            t = x - x_points[i]
            result = a[i] + b[i] * t + c[i] * t**2 + d[i] * t**3
            cache_set(spline_cache, x_key, Float4096(result))
            return result
    result = y_points[-1] if x > x_points[-1] else y_points[0]
    cache_set(spline_cache, x_key, Float4096(result))
    return result

def P_nb(n_beta: 'Float4096', prime_interp) -> 'Float4096':
    n_float = float(n_beta)
    if n_float in prime_cache:
        return prime_cache[n_float]
    result = Float4096(prime_interp(n_float))
    cache_set(prime_cache, n_float, result)
    return result

def solve_n_beta_for_prime(p_target: int, prime_interp, bracket=(0.1, 20)) -> 'Float4096':
    def objective(n_beta): return prime_interp(n_beta) - p_target
    result = root_scalar(objective, bracket=bracket, method='brentq')
    if result.converged:
        return Float4096(result.root)
    raise ValueError(f"Could not solve for n_beta corresponding to prime {p_target}")

def abs(x: Union['Float4096', 'Float4096Array', 'ComplexFloat4096']) -> 'Float4096':
    if isinstance(x, Float4096):
        return x.__abs__()  # Corrected from __absrect to __abs__
    elif isinstance(x, Float4096Array):
        return Float4096Array([abs(v) for v in x._data])
    elif isinstance(x, ComplexFloat4096):
        return x.abs()
    return Float4096(math.fabs(float(x)) if isinstance(x, (int, float)) else float(x))

def max(x: 'Float4096Array', y: Union['Float4096', Number] = None) -> 'Float4096':
    if y is None:
        return Float4096(max(float(v) for v in x._data))
    return x if float(x) > float(y) else Float4096(y)

def pow_f4096(x: 'Float4096', y: 'Float4096') -> 'Float4096':
    return Float4096(math.pow(float(x), float(y)))

class Float4096:
    def __init__(self, value: Union[float, int, str, List[int], 'Float4096'] = 0, exponent: int = 0, sign: int = 1):
        self.sign = 1 if (isinstance(value, (int, float)) and value >= 0) else -1 if isinstance(value, (int, float)) else sign
        self.exponent = exponent  # Fixed line
        if isinstance(value, (int, float)):
            self.digits = self._from_float(float(value))
        elif isinstance(value, str):
            try:
                # Try to parse the string as a float first (e.g., for "1e-20")
                value_float = float(value)
                self.digits = self._from_float(value_float)
            except ValueError:
                # If not a valid float, assume it's a base4096 encoded string
                self.digits = self._from_base4096_str(value)
        elif isinstance(value, list):
            self.digits = value[:DIGITS_PER_NUMBER]
            self.digits += [0] * (DIGITS_PER_NUMBER - len(self.digits))
        elif isinstance(value, Float4096):
            self.digits = value.digits[:]
            self.exponent = value.exponent
            self.sign = value.sign
        else:
            raise ValueError("Invalid input for Float4096")
        self.normalize()
        
    def __neg__(self) -> 'Float4096':
            return Float4096(self.digits, self.exponent, -self.sign)

    def _from_float(self, value: float) -> List[int]:
        if value == 0:
            return [0] * DIGITS_PER_NUMBER
        value = math.fabs(value)
        exponent = int(math.floor(math.log(value, BASE))) if value >= 1 else 0  # Use 0 for values < 1
        self.exponent = exponent
        mantissa = value / (BASE ** exponent)
        digits = []
        for _ in range(DIGITS_PER_NUMBER):
            if mantissa < 1e-10:  # Prevent precision loss
                digits.append(0)
            else:
                digit = int(mantissa)  # Take integer part directly
                digits.append(min(digit, BASE - 1))  # Ensure digits in [0, BASE-1]
                mantissa = (mantissa - digit) * BASE  # Update mantissa correctly
        return digits

    def _from_base4096_str(self, b4096_str: str) -> List[int]:
        import base4096
        binary = base4096.decode(b4096_str)
        value = np.frombuffer(binary, dtype=np.float64)[0]
        return self._from_float(value)

    def to_float(self) -> float:
        result = 0.0
        for i, digit in enumerate(self.digits):
            result += digit * (BASE ** (self.exponent - i))
        return self.sign * result

    def normalize(self):
        # Remove leading zeros
        while len(self.digits) > 1 and self.digits[0] == 0:
            self.digits.pop(0)
            self.exponent -= 1
        # Pad digits to DIGITS_PER_NUMBER
        self.digits = self.digits[:DIGITS_PER_NUMBER] + [0] * (DIGITS_PER_NUMBER - len(self.digits))
        # Handle zero case
        if all(d == 0 for d in self.digits):
            self.sign = 1
            self.exponent = 0

    def is_finite(self) -> bool:
        return all(0 <= d < BASE for d in self.digits) and abs(self.exponent) < 1000000

    def __add__(self, other: 'Float4096') -> 'Float4096':
        if not isinstance(other, Float4096):
            other = Float4096(other)
        if self.exponent < other.exponent:
            return other + self
        result_digits = [0] * DIGITS_PER_NUMBER
        carry = 0
        offset = self.exponent - other.exponent
        for i in range(DIGITS_PER_NUMBER - 1, -1, -1):
            other_digit = other.digits[i - offset] if 0 <= i - offset < DIGITS_PER_NUMBER else 0
            total = self.digits[i] + other_digit + carry
            result_digits[i] = total % BASE
            carry = total // BASE
        result = Float4096(0)
        result.digits = result_digits
        result.exponent = self.exponent
        result.sign = self.sign if abs(self) >= abs(other) else other.sign
        result.normalize()
        return result

    def __sub__(self, other: 'Float4096') -> 'Float4096':
        if not isinstance(other, Float4096):
            other = Float4096(other)
        other_neg = Float4096(other.digits, other.exponent, -other.sign)
        return self + other_neg

    def fft_multiply(self, other: 'Float4096') -> 'Float4096':
        if not isinstance(other, Float4096):
            other = Float4096(other)
        n = 2 * DIGITS_PER_NUMBER
        a = np.array(self.digits + [0] * DIGITS_PER_NUMBER, dtype=np.float64)
        b = np.array(other.digits + [0] * DIGITS_PER_NUMBER, dtype=np.float64)
        fa = FFT(a, n)
        fb = FFT(b, n)
        fc = fa * fb
        c = IFFT(fc).real
        result_digits = [0] * (2 * DIGITS_PER_NUMBER)
        carry = 0
        for i in range(2 * DIGITS_PER_NUMBER - 1, -1, -1):
            total = int(c[i] + carry + 0.5)
            result_digits[i] = total % BASE
            carry = total // BASE
        result = Float4096(0)
        result.digits = result_digits[:DIGITS_PER_NUMBER]
        result.exponent = self.exponent + other.exponent
        result.sign = self.sign * other.sign
        result.normalize()
        return result

    def __mul__(self, other: 'Float4096') -> 'Float4096':
        return self.fft_multiply(other)

    def __truediv__(self, other: 'Float4096') -> 'Float4096':
        if not isinstance(other, Float4096):
            other = Float4096(other)
        if float(other) < Float4096("1e-30"):
            raise ValueError("Division by near-zero value")
        result_digits = [0] * DIGITS_PER_NUMBER
        remainder = Float4096(self.digits, self.exponent, self.sign)
        divisor = Float4096(other.digits, other.exponent, other.sign)
        for i in range(DIGITS_PER_NUMBER):
            quotient_digit = 0
            while remainder >= divisor:
                remainder = remainder - divisor
                quotient_digit += 1
            result_digits[i] = quotient_digit
            remainder = remainder * Float4096(BASE)
        result = Float4096(result_digits, self.exponent - other.exponent, self.sign * other.sign)
        result.normalize()
        return result

    def __pow__(self, other: 'Float4096') -> 'Float4096':
        n = float(other)
        if n == int(n):
            result = Float4096(1)
            for _ in range(int(n)):
                result = result.fft_multiply(self)
            return result
        return pow_f4096(self, other)

    def __eq__(self, other: 'Float4096') -> bool:
        if not isinstance(other, Float4096):
            other = Float4096(other)
        return self.sign == other.sign and self.exponent == other.exponent and self.digits == other.digits

    def __lt__(self, other: 'Float4096') -> bool:
        if not isinstance(other, Float4096):
            other = Float4096(other)
        if self.sign != other.sign:
            return self.sign < other.sign
        if self.exponent != other.exponent:
            return (self.exponent < other.exponent) if self.sign > 0 else (self.exponent > other.exponent)
        return self.digits < other.digits

    def __le__(self, other: 'Float4096') -> bool:
        return self == other or self < other

    def __gt__(self, other: 'Float4096') -> bool:
        return not self <= other

    def __ge__(self, other: 'Float4096') -> bool:
        return not self < other

    def __abs__(self) -> 'Float4096':
        return Float4096(self.digits, self.exponent, 1)

    def __float__(self) -> float:
        return self.to_float()

    def __str__(self) -> str:
        return f"Float4096({self.to_float()})"

    def __repr__(self) -> str:
        return f"Float4096(digits={self.digits[:5]}..., exponent={self.exponent}, sign={self.sign})"

    def to_base4096(self) -> str:
        import base4096
        return base4096.encode(self.digits_to_bytes())

    def digits_to_bytes(self) -> bytes:
        return b''.join(d.to_bytes(2, 'big') for d in self.digits)

class ComplexFloat4096:
    def __init__(self, real: 'Float4096', imag: 'Float4096' = Float4096(0)):
        self.real = Float4096(real)
        self.imag = Float4096(imag)

    def __add__(self, other: 'ComplexFloat4096') -> 'ComplexFloat4096':
        if not isinstance(other, ComplexFloat4096):
            other = ComplexFloat4096(Float4096(other))
        return ComplexFloat4096(self.real + other.real, self.imag + other.imag)

    def __mul__(self, other: 'ComplexFloat4096') -> 'ComplexFloat4096':
        if not isinstance(other, ComplexFloat4096):
            other = ComplexFloat4096(Float4096(other))
        real = self.real * other.real - self.imag * other.imag
        imag = self.real * other.imag + self.imag * other.real
        return ComplexFloat4096(real, imag)

    def __truediv__(self, other: 'ComplexFloat4096') -> 'ComplexFloat4096':
        if not isinstance(other, ComplexFloat4096):
            other = ComplexFloat4096(Float4096(other))
        denom = other.real * other.real + other.imag * other.imag
        if float(denom) < Float4096("1e-30"):
            raise ValueError("Division by near-zero complex magnitude")
        real = (self.real * other.real + self.imag * other.imag) / denom
        imag = (self.imag * other.real - self.real * other.imag) / denom
        return ComplexFloat4096(real, imag)

    def conjugate(self) -> 'ComplexFloat4096':
        return ComplexFloat4096(self.real, -self.imag)

    def abs(self) -> 'Float4096':
        return sqrt(self.real * self.real + self.imag * self.imag)

    def exp(self) -> 'ComplexFloat4096':
        e_real = exp(self.real)
        return ComplexFloat4096(e_real * cos(self.imag), e_real * sin(self.imag))

    def __float__(self) -> complex:
        return complex(float(self.real), float(self.imag))

    def __str__(self) -> str:
        return f"ComplexFloat4096({float(self.real)} + {float(self.imag)}i)"

class Float4096Array:
    def __init__(self, values: Union[List, Tuple, np.ndarray, 'Float4096Array']):
        if isinstance(values, (list, tuple, np.ndarray)):
            self._data = [Float4096(v) if not isinstance(v, Float4096) else v for v in values]
        elif isinstance(values, Float4096Array):
            self._data = values._data.copy()
        else:
            raise ValueError("Invalid input for Float4096Array")

    def __len__(self) -> int:
        return len(self._data)

    def __getitem__(self, idx: Union[int, slice]) -> Union['Float4096', 'Float4096Array']:
        if isinstance(idx, (int, slice)):
            return self._data[idx] if isinstance(idx, int) else Float4096Array(self._data[idx])
        raise ValueError("Invalid index")

    def __setitem__(self, idx: Union[int, slice], value: Union['Float4096', Number]):
        if isinstance(idx, (int, slice)):
            self._data[idx] = Float4096(value) if not isinstance(value, Float4096) else value
        else:
            raise ValueError("Invalid index")

    def __array__(self, dtype=None) -> np.ndarray:
        return np.array([float(x) for x in self._data], dtype=dtype if dtype else np.float64)

    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
        inputs = [np.array(x) if isinstance(x, Float4096Array) else x for x in inputs]
        inputs = [Float4096Array([x]) if isinstance(x, (Float4096, Number)) else x for x in inputs]
        inputs = [np.array([float(v) for v in x._data]) if isinstance(x, Float4096Array) else x for x in inputs]
        result = getattr(ufunc, method)(*inputs, **kwargs)
        if isinstance(result, np.ndarray):
            return Float4096Array([Float4096(x) for x in result])
        return Float4096(result)

    def __add__(self, other: Union['Float4096', 'Float4096Array', Number]) -> 'Float4096Array':
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([x + other for x in self._data])
        elif isinstance(other, Float4096Array):
            if len(self) != len(other):
                raise ValueError("Array lengths must match")
            return Float4096Array([x + y for x, y in zip(self._data, other._data)])
        return NotImplemented

    def __mul__(self, other: Union['Float4096', 'Float4096Array', Number]) -> 'Float4096Array':
        if isinstance(other, (Float4096, Number)):
            return Float4096Array([x * other for x in self._data])
        elif isinstance(other, Float4096Array):
            if len(self) != len(other):
                raise ValueError("Array lengths must match")
            return Float4096Array([x * y for x, y in zip(self._data, other._data)])
        return NotImplemented

    def __str__(self) -> str:
        return f"Float4096Array({[float(x) for x in self._data]})"

class GRAElement:
    def __init__(self, n: 'Float4096', Omega: 'Float4096' = Float4096(1), base: 'Float4096' = Float4096(2), prime_interp=None):
        if float(n) < 1:
            raise ValueError("n must be >= 1")
        self.n = Float4096(n)
        self.Omega = Float4096(Omega)
        self.base = Float4096(base)
        self.prime_interp = prime_interp or prepare_prime_interpolation()
        self._value = self._compute_r_n()

    def _compute_r_n(self) -> 'Float4096':
        try:
            if float(self.n) > 1000:
                return Float4096(0)
            n_int = int(float(self.n))
            Fn = fib_real(self.n)
            if Fn == Float4096(0):
                return Float4096(0)
            product = native_prime_product(n_int)
            val = phi * self.Omega * Fn * pow(self.base, self.n) * product
            return sqrt(val) if val.is_finite() and val > Float4096(0) else Float4096(0)
        except Exception:
            return Float4096(0)

    @classmethod
    def from_recursive(cls, n: 'Float4096', prev_r_n_minus_1: 'GRAElement' = None, Omega: 'Float4096' = Float4096(1), base: 'Float4096' = Float4096(2), prime_interp=None) -> 'GRAElement':
        n = Float4096(n)
        if float(n) < 1:
            raise ValueError("n must be >= 1")
        if float(n) == 1:
            return cls(n, Omega, base, prime_interp)
        if prev_r_n_minus_1 is None:
            prev_r_n_minus_1 = cls(n - Float4096(1), Omega, base, prime_interp)
        Fn = fib_real(n)
        Fn_minus_1 = fib_real(n - Float4096(1))
        if Fn == Float4096(0) or Fn_minus_1 == Float4096(0):
            return cls(n, Omega, base, prime_interp)
        p_n = P_nb(n, prime_interp or prepare_prime_interpolation())
        factor = sqrt(Float4096(2) * p_n * (Fn / Fn_minus_1))
        r_n = prev_r_n_minus_1._value * factor
        result = cls(n, Omega, base, prime_interp)
        result._value = r_n if r_n.is_finite() and r_n > Float4096(0) else result._value
        return result

    def gra_multiply(self, other: 'GRAElement') -> 'GRAElement':
        if not isinstance(other, GRAElement):
            raise ValueError("GRA multiplication requires a GRAElement")
        if float(self.n) != float(other.n) + 1:
            raise ValueError("GRA multiplication requires n = m + 1")
        return GRAElement.from_recursive(self.n, prev_r_n_minus_1=other, Omega=self.Omega, base=self.base, prime_interp=self.prime_interp)

    def gra_add(self, other: 'GRAElement') -> 'Float4096':
        if not isinstance(other, GRAElement):
            raise ValueError("GRA addition requires a GRAElement")
        result = sqrt(self._value ** Float4096(2) + other._value ** Float4096(2))
        return result if result.is_finite() else Float4096(0)

    def __float__(self) -> float:
        return float(self._value)

    def __str__(self) -> str:
        return f"GRAElement({float(self._value)})"

def sqrt(x: 'Float4096') -> 'Float4096':
    if isinstance(x, Float4096Array):
        return Float4096Array([sqrt(v) for v in x._data])
    if float(x) < 0:
        raise ValueError("Square root of negative number")
    if float(x) == 0:
        return Float4096(0)
    guess = Float4096(float(x) ** 0.5)
    for _ in range(10):
        guess = (guess + (x / guess)) / Float4096(2)
    return guess

def exp(x: 'Float4096') -> 'Float4096':
    if isinstance(x, Float4096Array):
        return Float4096Array([exp(v) for v in x._data])
    x_float = float(x)
    if abs(x_float) < 1e-10:
        return Float4096(1)
    result = Float4096(1)
    term = Float4096(1)
    for n in range(1, 50):
        term *= x / Float4096(n)
        result += term
        if abs(term) < Float4096("1e-20"):
            break
    return result

def log(x: 'Float4096') -> 'Float4096':
    if isinstance(x, Float4096Array):
        return Float4096Array([log(v) for v in x._data])
    if float(x) <= 0:
        raise ValueError("Log of non-positive number")
    x_float = float(x)
    if abs(x_float - 1) < 1e-10:
        return Float4096(0)
    return Float4096(math.log(x_float))

def sin(x: 'Float4096') -> 'Float4096':
    if isinstance(x, Float4096Array):
        return Float4096Array([sin(v) for v in x._data])
    result = x
    term = x
    x_sq = x * x
    for n in range(1, 50):
        term *= -x_sq / Float4096(2 * n * (2 * n + 1))
        result += term
        if abs(term) < Float4096("1e-20"):
            break
    return result

def cos(x: 'Float4096') -> 'Float4096':
    if isinstance(x, Float4096Array):
        return Float4096Array([cos(v) for v in x._data])
    result = Float4096(1)
    term = Float4096(1)
    x_sq = x * x
    for n in range(1, 50):
        term *= -x_sq / Float4096(2 * n * (2 * n - 1))
        result += term
        if abs(term) < Float4096("1e-20"):
            break
    return result

def pi_val() -> 'Float4096':
    return Float4096(math.pi)

def log10(x: 'Float4096') -> 'Float4096':
    return log(x) / log(Float4096(10))

def linspace(start: 'Float4096', stop: 'Float4096', num: int) -> 'Float4096Array':
    start, stop = Float4096(start), Float4096(stop)
    step = (stop - start) / Float4096(num - 1)
    return Float4096Array([start + Float4096(i) * step for i in range(num)])

def logspace(start: 'Float4096', stop: 'Float4096', num: int) -> 'Float4096Array':
    start, stop = Float4096(start), Float4096(stop)
    return Float4096Array([exp(x) for x in linspace(log(start), log(stop), num)])

def mean(x: 'Float4096Array') -> 'Float4096':
    total = Float4096(0)
    for xi in x._data:
        total += xi
    return total / Float4096(len(x))

def stddev(x: 'Float4096Array') -> 'Float4096':
    mu = mean(x)
    n = len(x)
    if n <= 1:
        return Float4096(0)
    squared_diff = Float4096(0)
    for xi in x._data:
        squared_diff += (xi - mu) ** Float4096(2)
    return sqrt(squared_diff / Float4096(n - 1))

def D(n: 'Float4096', beta: 'Float4096', r: 'Float4096' = Float4096(1), k: 'Float4096' = Float4096(1), Omega: 'Float4096' = Float4096(1), base: 'Float4096' = Float4096(2), scale: 'Float4096' = Float4096(1), prime_interp=None) -> 'Float4096':
    try:
        r_n = GRAElement(n + beta, Omega=Omega, base=base, prime_interp=prime_interp)
        val = scale * r_n._value
        if not val.is_finite() or val <= Float4096(0):
            return Float4096("1e-30")
        return val * (r ** k)
    except Exception:
        return Float4096("1e-30")

def D_x(x_val: 'Float4096', s, prime_interp) -> 'ComplexFloat4096':
    P = P_nb(x_val, prime_interp)
    F = fib_real(x_val)
    zeta_val = native_zeta(s)
    product = phi * F * pow(Float4096(2), x_val) * P * Omega
    s_k = ComplexFloat4096(Float4096(float(s.real ** k)), Float4096(float(s.imag ** k)))
    return sqrt(product) * s_k

def F_x(x_val: 'Float4096', s, prime_interp) -> 'ComplexFloat4096':
    pi_x = ComplexFloat4096(cos(pi_val * x_val), sin(pi_val * x_val)) * native_zeta(s)
    return D_x(x_val, s, prime_interp) * pi_x

def invert_D(value: 'Float4096', r: 'Float4096' = Float4096(1), k: 'Float4096' = Float4096(1), Omega: 'Float4096' = Float4096(1), base: 'Float4096' = Float4096(2), scale: 'Float4096' = Float4096(1), max_n: 'Float4096' = Float4096(5000), steps: int = 1000, prime_interp=None) -> Tuple:
    candidates = []
    try:
        value_abs = abs(value)
        value_safe = value_abs if value_abs > Float4096("1e-30") else Float4096("1e-30")
        log_val = log10(value_safe)
        start_sf = max(log_val - Float4096(3), Float4096(-10))
        end_sf = min(log_val + Float4096(3), Float4096(10))
        scale_factors = pow_f4096(Float4096(10), linspace(start_sf, end_sf, 10))
        max_n_val = min(5000, max(1000, int(500 * float(abs(log_val)))))
        steps_val = min(2000, max(500, int(200 * float(abs(log_val)))))
        n_values = logspace(Float4096(0), log10(Float4096(max_n_val)), steps_val) if float(log_val) > 2 else linspace(Float4096(0), Float4096(max_n_val), steps_val)
        r_values = Float4096Array([0.5, 1.0, 2.0])
        k_values = Float4096Array([0.5, 1.0, 2.0])
        for n in n_values:
            for beta in linspace(Float4096(0), Float4096(1), 5):
                for dynamic_scale in scale_factors:
                    for r_val in r_values:
                        for k_val in k_values:
                            val = D(n, beta, r_val, k_val, Omega, base, scale * dynamic_scale, prime_interp)
                            if val.is_finite():
                                diff = abs(val - value_abs)
                                candidates.append((diff, n, beta, dynamic_scale, r_val, k_val))
        if not candidates:
            return None, None, None, None, None, None
        candidates.sort(key=lambda x: float(x[0]))
        diff, n, beta, dynamic_scale, r_val, k_val = candidates[0]
        return n, beta, dynamic_scale, diff * Float4096("0.01"), r_val, k_val
    except Exception:
        return None, None, None, None, None, None

def ds_squared(n: 'Float4096', Omega: 'Float4096' = Float4096(1), base: 'Float4096' = Float4096(2), prime_interp=None) -> 'Float4096':
    Fn = fib_real(n)
    n_int = int(float(n))
    prime_interp = prime_interp or prepare_prime_interpolation()
    product = native_prime_product(n_int)
    term = Fn * pow(base, n) * product
    return phi * Omega * term

def g9(n: 'Float4096', prime_interp=None) -> 'Float4096':
    r_n = GRAElement(n, prime_interp=prime_interp)._value
    r_n_plus = GRAElement(n + Float4096(1e-5), prime_interp=prime_interp)._value
    r_n_minus = GRAElement(n - Float4096(1e-5), prime_interp=prime_interp)._value
    h = Float4096(1e-5)
    return (r_n_plus ** 2 - 2 * r_n ** 2 + r_n_minus ** 2) / (h ** 2)

def R9(n: 'Float4096', prime_interp=None) -> 'Float4096':
    r_n = GRAElement(n, prime_interp=prime_interp)._value
    r_n_plus = GRAElement(n + Float4096(1e-5), prime_interp=prime_interp)._value
    r_n_minus = GRAElement(n - Float4096(1e-5), prime_interp=prime_interp)._value
    h = Float4096(1e-5)
    return (r_n_plus - 2 * r_n + r_n_minus) / (h ** 2)

def grad9_r_n(n: 'Float4096', prime_interp=None) -> 'Float4096':
    r_n_minus_1 = GRAElement(n - Float4096(1), prime_interp=prime_interp)._value
    Fn = fib_real(n)
    Fn_minus_1 = fib_real(n - Float4096(1))
    prime_interp = prime_interp or prepare_prime_interpolation()
    p_n = P_nb(n, prime_interp)
    factor = sqrt(Float4096(2) * p_n * (Fn / Fn_minus_1)) - Float4096(1)
    return r_n_minus_1 * factor

def Gamma_n(n: 'Float4096', prime_interp=None) -> 'Float4096':
    r_n = GRAElement(n, prime_interp=prime_interp)._value
    r_n_plus = GRAElement(n + Float4096(1e-5), prime_interp=prime_interp)._value
    h = Float4096(1e-5)
    return Float4096(0.5) * (log(r_n_plus) - log(r_n)) / h

def D_n(n: 'Float4096', prime_interp=None) -> 'Float4096':
    r_n = GRAElement(n, prime_interp=prime_interp)._value
    r_n_plus = GRAElement(n + Float4096(1e-5), prime_interp=prime_interp)._value
    h = Float4096(1e-5)
    partial = (r_n_plus - r_n) / h
    return partial + Gamma_n(n, prime_interp)

def T(X_n: Tuple['Float4096', 'Float4096', 'Float4096', 'Float4096'], delta_n: 'Float4096' = Float4096(1), prime_interp=None) -> Tuple['Float4096', 'Float4096', 'Float4096', 'Float4096']:
    n, Fn, p_n, r_n = X_n
    n_new = n + delta_n
    Fn_new = fib_real(n_new)
    prime_interp = prime_interp or prepare_prime_interpolation()
    p_n_new = P_nb(n_new, prime_interp)
    r_n_new = GRAElement(n_new, prime_interp=prime_interp)._value
    return (n_new, Fn_new, p_n_new, r_n_new)

def Xi_n(n: 'Float4096', prime_interp=None) -> Tuple['Float4096', 'Float4096']:
    r_n = GRAElement(n, prime_interp=prime_interp)._value
    Fn = fib_real(n)
    Fn_minus_1 = fib_real(n - Float4096(1))
    prime_interp = prime_interp or prepare_prime_interpolation()
    p_n = P_nb(n, prime_interp)
    omega_n = sqrt(Float4096(2) * p_n * (Fn / Fn_minus_1))
    return (r_n, omega_n)

def psi_9(n: 'Float4096', tau_n: 'Float4096' = Float4096(1), A_n: 'Float4096' = Float4096(1), prime_interp=None) -> 'ComplexFloat4096':
    _, omega_n = Xi_n(n, prime_interp)
    angle = omega_n * tau_n
    return ComplexFloat4096(A_n * cos(angle), A_n * sin(angle))

def E_n(n: 'Float4096', tau_n: 'Float4096' = Float4096(1), prime_interp=None) -> Tuple['Float4096', 'Float4096']:
    r_n = GRAElement(n, prime_interp=prime_interp)._value
    return (r_n, tau_n)

def edge_weight(n: 'Float4096', prime_interp=None) -> 'Float4096':
    Fn = fib_real(n)
    Fn_minus_1 = fib_real(n - Float4096(1))
    prime_interp = prime_interp or prepare_prime_interpolation()
    p_n = P_nb(n, prime_interp)
    return sqrt(Float4096(2) * p_n * (Fn / Fn_minus_1))

def Coil(f: 'Float4096') -> 'ComplexFloat4096':
    angle = pi_val * f
    return ComplexFloat4096(cos(angle), sin(angle))

def Spin(f: 'Float4096', s, prime_interp) -> 'ComplexFloat4096':
    return F_x(f, s, prime_interp).conjugate()

def Splice(f: 'Float4096', s, prime_interp) -> 'ComplexFloat4096':
    s_conj = 1 - s
    return F_x(f, s_conj, prime_interp)

def Reflect(f: 'Float4096', s, prime_interp) -> 'ComplexFloat4096':
    return F_x(-f, s, prime_interp)

def apply_operator(op, x: 'Float4096', n: int, s=None, prime_interp=None) -> 'ComplexFloat4096':
    result = ComplexFloat4096(x)
    for _ in range(n):
        result = op(result.real, s, prime_interp) if op in (Spin, Splice, Reflect) else op(result.real)
    return result

def M_O(n: 'Float4096', x: 'Float4096', O, s=None, prime_interp=None) -> 'ComplexFloat4096':
    return apply_operator(O, x, int(float(n)), s, prime_interp)

def Coil_n(x: 'Float4096', n: int) -> 'ComplexFloat4096':
    return apply_operator(Coil, x, n)

def Spin_n(x: 'Float4096', n: int, s, prime_interp) -> 'ComplexFloat4096':
    return apply_operator(Spin, x, n, s, prime_interp)

def Splice_n(x: 'Float4096', n: int, s, prime_interp) -> 'ComplexFloat4096':
    return apply_operator(Splice, x, n, s, prime_interp)

def Reflect_n(x: 'Float4096', n: int, s, prime_interp) -> 'ComplexFloat4096':
    return apply_operator(Reflect, x, n, s, prime_interp)

def recursive_time(n: 'Float4096') -> 'Float4096':
    return pow_f4096(phi, -n)

def frequency(n: 'Float4096') -> 'Float4096':
    return Float4096(1) / recursive_time(n)

def charge(n: 'Float4096') -> 'Float4096':
    return pow_f4096(recursive_time(n), 3)

def field_yield(n: 'Float4096', m_val: 'Float4096') -> 'Float4096':
    return pow_f4096(m_val, 2) / pow_f4096(recursive_time(n), 7)

def action(n: 'Float4096', m_val: 'Float4096') -> 'Float4096':
    return field_yield(n, m_val) * pow_f4096(charge(n), 2)

def energy(n: 'Float4096', m_val: 'Float4096') -> 'Float4096':
    return action(n, m_val) * frequency(n)

def force(n: 'Float4096', m_val: 'Float4096') -> 'Float4096':
    return energy(n, m_val) / m_val

def voltage(n: 'Float4096', m_val: 'Float4096') -> 'Float4096':
    return energy(n, m_val) / charge(n)

def labeled_output(n: 'Float4096', m_val: 'Float4096') -> Dict[str, 'Float4096']:
    return {
        "Hz": frequency(n),
        "Time s": recursive_time(n),
        "Charge C": charge(n),
        "Yield Ω": field_yield(n, m_val),
        "Action h": action(n, m_val),
        "Energy E": energy(n, m_val),
        "Force F": force(n, m_val),
        "Voltage V": voltage(n, m_val),
    }

class GoldenClassField:
    def __init__(self, s_list: List, x_list: List['Float4096'], prime_interp):
        self.s_list = [sp.sympify(s) for s in s_list]
        self.x_list = [Float4096(x) for x in x_list]
        self.prime_interp = prime_interp
        self.field_generators = []
        self.field_names = []
        self.field_cache = {}
        self.construct_class_field()

    def construct_class_field(self):
        for s in self.s_list:
            for x in self.x_list:
                key = (str(s), float(x))
                if key not in self.field_cache:
                    self.field_cache[key] = F_x(x, s, self.prime_interp)
                self.field_generators.append(self.field_cache[key])
                self.field_names.append(f"F_{float(x):.4f}_s_{s}")

    def as_dict(self) -> Dict[str, 'ComplexFloat4096']:
        return dict(zip(self.field_names, self.field_generators))

    def display(self):
        for name, val in self.as_dict().items():
            print(f"{name} = {float(val)}")

    def reciprocity_check(self):
        print("\nReciprocity Tests: F_x(s) * F_x(1-s)")
        for s in self.s_list:
            for x in self.x_list:
                try:
                    s_conj = 1 - s
                    key1 = (str(s), float(x))
                    key2 = (str(s_conj), float(x))
                    if key1 not in self.field_cache:
                        self.field_cache[key1] = F_x(x, s, self.prime_interp)
                    if key2 not in self.field_cache:
                        self.field_cache[key2] = F_x(x, s_conj, self.prime_interp)
                    prod = self.field_cache[key1] * self.field_cache[key2]
                    print(f"x={float(x):.4f}, s={s}, F_x(s)·F_x(1-s) = {float(prod)}")
                except Exception as e:
                    print(f"Failed for x={float(x)}, s={s}: {e}")

def field_automorphisms(F_val: 'ComplexFloat4096', x_val: 'Float4096', s, prime_interp) -> Dict[str, 'ComplexFloat4096']:
    s = sp.sympify(s)
    return {
        "F_x(s)": F_val,
        "F_x(1-s)": Splice(x_val, s, prime_interp),
        "F_-x(s)": Reflect(x_val, s, prime_interp),
        "conjugate(F)": F_val.conjugate(),
    }

def field_tension(F_val: 'ComplexFloat4096', C_val, m_val: 'Float4096', s_val) -> 'Float4096':
    return Float4096(float((F_val.abs() * m_val * Float4096(float(s_val))) / (C_val**2)))

# Initialize constants
phi = Float4096((1 + math.sqrt(5)) / 2)
sqrt5 = Float4096(math.sqrt(5))
pi_val = Float4096(math.pi)
k = Float4096(-1)
r = Float4096(1)

While version 7 is able to run our cosmos file per much debugging, I’ve no idea how long it would take to complete, or if it ever would. And while version 8 lets us know how long it would take to complete and brings back joblib (multiple processor) support as with my other thread, I haven’t tested it yet. I may not ever, I jumped straight to 9, to follow.

Aspect Version 7 Version 8
Core Arithmetic :check_mark: Float4096, Arrays, FFT, GRA, Complex :check_mark: Same + fully integrated in the system
Pipeline/Orchestration ✘ Absent (library only) :check_mark: 6‑step physics/cosmology pipeline
Logging & Physical Checks ✘ Not included :check_mark: Extensive diagnostics & domain filters
Production Readiness Alpha, basic tests Production‑grade with error handling & saving
Scientific Application Foundation-only Applied to cosmology, constants, and data fitting

:abacus: Float4096 v9 – Feature Overview

All major capabilities of the Float4096 framework categorized by function. Fully symbolic, precision-native, and physics-aware.


Click the below arrows to expand -

📦 Core Types & Math
Feature Description Status
Float4096 Arbitrary-precision real (via mpmath) :white_check_mark:
ComplexFloat4096 Complex number support with base4096 precision :white_check_mark:
Float4096Array NumPy-like container with ufunc overrides :white_check_mark:
High-precision math ops sqrt, exp, log, sin, cos, pow, etc. :white_check_mark:
log10, abs, max Custom overloads for precision types :white_check_mark:

🔁 Recursive Structures
Feature Description Status
GRAElement Golden Recursive Algebra number :white_check_mark:
from_recursive() Builds rₙ from rₙ₋₁ using φ, primes, and Fₙ :white_check_mark:
gra_add, gra_multiply Symbolic recursive composition operations :white_check_mark:
GoldenClassField Recursive physical field mapped over GRAElements :white_check_mark:

🔢 Sequences & Interpolation
Feature Description Status
Fibonacci (Binet’s φ form) Precision Fibonacci with π-correction :white_check_mark:
Prime cache Cached list of 10,000+ primes :white_check_mark:
P_nb(n) Interpolated prime value at fractional index :white_check_mark:
Prime spline interpolation Smooth logφ-based cubic spline estimator :white_check_mark:

ζ Zeta & Series
Feature Description Status
native_zeta(s) Complex ζ(s) series approximation (Euler sum) :white_check_mark:
Zeta caching LRU-style memoization for reuse :white_check_mark:

⚛ Symbolic Physics Dimensions
Feature Description Status
D(n, β, ...) Recursive dimension operator :white_check_mark:
invert_D(...) Root-solve inverse of dimension operator :white_check_mark:
Physical units action, energy, charge, force, etc. :white_check_mark:
Consistency checks ds_squared, Gammaₙ, grad9_rₙ, etc. :white_check_mark:

🌀 Field Automorphisms
Feature Description Status
Spin, Coil Symbolic morphisms over recursive fields :white_check_mark:
Splice Field blend operator :white_check_mark:
Reflect Dual-state symmetry operator :white_check_mark:
field_automorphisms() Returns standard field operations :white_check_mark:

⏱ Recursive Time & Frequency
Feature Description Status
T(n), Xiₙ Recursive time/frequency generators :white_check_mark:
recursive_time() Converts n to harmonic time period :white_check_mark:
field_yield, field_tension Derivative-like behavior maps :white_check_mark:

📈 Interpolation & Spline
Feature Description Status
native_cubic_spline() φ-scaled spline interpolation :white_check_mark:
compute_spline_coefficients() Calculates cubic coefficients :white_check_mark:
Spline cache LRU-memoized spline evaluations :white_check_mark:

⚙️ Utilities & Arrays
Feature Description Status
linspace, logspace Range generation for Float4096 :white_check_mark:
mean, stddev Array-based statistical ops :white_check_mark:
FFT support Uses pyfftw if available, else NumPy :white_check_mark:

💾 Caching & Files
Feature Description Status
Prime cache Disk-cached with fallback generation :white_check_mark:
Zeta cache OrderedDict-based LRU :white_check_mark:
Spline & fib cache Intermediate result memoization :white_check_mark:
Auto-load/save .pkl used for primes_cache, spline, etc. :white_check_mark:

🌌 Cosmology & Physics Integration
Feature Description Status
cosmo_fit.py Cosmological dataset fitting using Float4096 :white_check_mark:
labeled_output() Dimension-keyed result bundling :white_check_mark:
Physical constants All symbolic units expressed recursively :white_check_mark:

🧪 Dev Readiness
Feature Description Status
Modular layout float4096/ with clear __init__ :white_check_mark:
Precision split float4096_mp.py for math core :white_check_mark:

TO DO:

The Base4096 module has fallen or devolved out of our suite, but we will be bringing it back in. This 4096 character alphabet unlocks loads of fun, when I finally get it to play nice with our suite. It was pulled out due to padding problems which I was too tired at the time to fix, as I am now. And so, I will do it later on. God bless you.

And, so you know, I have not tested anything yet! So there’s that…

Initial testing results: we have a circular dependency. This being at the top of our script, there’s probably more errors. When I get around to it, I can fix this and these. Until then, defer to “-7” or you may debug yourself if you’re in a hurry for shiny new “-9”.

Still getting circular errors. I’m new to modules, so I need to learn about resolving them on my own as our bot loves to make them while forgetting previous milestones without telling anyone. In other words, our project has become complex enough that bots are pretty much useless in resolving the finished product, so I should be going in manually. Grr. I’ve been busy this weekend with a reunion, birthday bash, Cheyenne Frontier days, sorry. More to come, stay tuned..